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Introduction: Stability Approach and Nonlinear
Models

The S-Theorem

This book contains the description and application of a method of asymptotic analy-
sis, a new stability theorem that we call the S-Theorem, originated in the study of the
large-time behaviour of a class of partial differential equations known generally as
nonlinear reaction-diffusion equations. These equations are among the best-known
equations of mathematical physics. But, as shown in the text, the method has a more
general scope in the study of evolution problems which can be posed in an abstract
setting as infinite-dimensional dynamical systems. This is why we often refer to it as
a Dynamical Systems Approach.

The study of asymptotic behaviour of solutions of evolution equations is a clas-
sical subject of mechanics and dynamical systems, and a number of quite effective
methods have been developed, such as Lyapunov techniques, stable and centre man-
ifold analysis, scaling and renormalization group arguments, etc. These methods can
be used quite successfully to understand the asymptotic properties of many quasi-
linear reaction-diffusion equations, also known as nonlinear heat equations, in par-
ticular, when they admit global-in-time solutions, so that no essential singularities
occur in the large-time evolution. In principle, we will not deal with such problems
with known global behaviour, and will be concerned with problems that exhibit a
complicated structure of asymptotic patterns that makes our analysis necessary or
convenient.

The method presented here is suitable for application to different evolution prob-
lems described by nonlinear partial differential equations (PDEs) of parabolic or
hyperbolic type, involving first-order, second-order or higher-order operators, many
of them admitting free boundaries, or for other types of equations or systems. The
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common feature is that these evolution problems can be formulated as asymptoti-
cally small perturbations of certain dynamical systems with better-known behaviour.
Now, it usually happens that the perturbation is small in a very weak sense, hence
the difficulty (or impossibility) of applying more classical techniques.

Though the method originated with the analysis of critical behaviour for evolu-
tion PDEs, in its abstract formulation it deals with a nonautonomous abstract differ-
ential equation (NDE)

ur=Aw)+Cu,t), t>0, €))

where u has values in a Banach space, like an L? space, A is an autonomous
(time-independent) operator and C is an asymptotically small perturbation, so that
C(u(t),t) — 0O ast — oo along orbits {u(¢)} of the evolution in a sense to be made
precise, which in practice can be quite weak. We work in a situation in which the
autonomous (limit) differential equation (ADE)

U = A(Ll) (2)

has a well-known asymptotic behaviour, and we want to prove that for large times
the orbits of the original evolution problem converge to a certain class of limits of
the autonomous equation.

More precisely, we want to prove that the orbits of (NDE) are attracted by a
certain limit set 2, of (ADE), which may consist of equilibria of the autonomous
equation, or it can be a more complicated object. A set of three basic requirements
allows this conclusion, the main one being the Lyapunov stability of the closed set
Q4, and this is the contents of the S-Theorem. It is typical of standard methods
that such stability assumptions have to be imposed on the original equation (NDE).
An important feature of our method is that it places the stability assumption on the
limit equation (ADE). Note also that the convergence result does not depend on the
knowledge of any rate of decay for the perturbation C(u, t) as ¢ grows.

In Chapter 1 we state our main stability theorem (S-Theorem, in short). We es-
tablish that under three hypotheses (H1)—(H3), the omega-limit set of a perturbed
dynamical system is stable under arbitrary asymptotically small perturbation. This
result will be used throughout the book. The problem has been formulated above for
convenience in the language of differential equations, but actually the S-Theorem is
of a more general character, and applies to abstract dynamical systems posed in a
complete metric space.

Asymptotics of nonlinear evolution PDEs

The rest of the book is devoted to the study of a selection of nonlinear asymptotic
phenomena which occur for classes of equations involving different nonlinear oper-
ators. Indeed, the second goal of the book is to contribute a number of techniques
and results to the wide field of asymptotics of nonlinear evolution PDEs.
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The concrete examples of application have been chosen because they are relevant
asymptotic problems that attracted the interest of the authors, were not covered by
existing theories, and motivated the development of this theory. We present nine main
examples, starting with classical reaction-diffusion-convection theory, and go on to
cover subjects in blow-up, fluid flows (Navier—Stokes), Hamilton—Jacobi and fully
nonlinear equations. We contribute to the theory of such equations, describe some
general nonlinear effects and present a classification of the involved singularities.

Indeed, a first motivation of the theory has been the study of typical models of
nonlinear diffusion. We devote Chapter 2 to presenting the main equations along
with the concepts, tools and typical results on existence, uniqueness and differential
properties of weak solutions, that might be useful in setting the context, as a tech-
nical preliminary for subsequent chapters. We will in particular examine the known
asymptotic properties as t — 00. We demonstrate basic mathematical tools devel-
oped in the second half of the twentieth century on a benchmark equation, the Porous
Medium Equation (PME, in short)

uy = Au™ in RY xRy, (3)

where m > 1 is a fixed exponent. For m = 1 it is just the classical Heat Equation.

In subsequent chapters, our text contributes to the general theory by supplying a
further analysis tool that has allowed the authors to perform a complete asymptotic
study in a number of open cases, many of them involving critical situations and
striking phenomena of singularity formation. Especially, we will be interested in
blow-up properties, when solutions become unbounded (in L or in another natural
norm) after a finite time.

Before we proceed with the outline of the applications, let us try to understand
in a few words why the study of nonlinear evolution equations or reaction-diffusion
type leads to the consideration of small asymptotic perturbations of better-known
autonomous dynamical systems.

Consider the case of critical diffusion-absorption treated in Chapter 4. It is well
known that the solutions of the heat equation u; = Au and the PME (3) posed in
the whole space R" with integrable initial data ug € L!(R"), decay as 1 — oo like
O(¢t™%) for an exponent « that is showntobe o = N/[N(m — 1) + 2].

When we want to be more precise we rescale (i.e., we zoom) the variable u into
a new variable 6 that equals u times the decay factor %, hence it has size O(1) for
large ¢. But if we want 6 to be a solution of a nice equation we have to also re-scale
space in the form x = & r*/N. We are also interested for the same reason in using
logarithmic time v = Inz. This is all well known using dimensional analysis and
exploits the property of scale invariance of the equation, and leads to the rescaled
PME for6(&, t) =t u(x, t):

0 =A0) = A" + L E-VO +ab. “)

It is an autonomous equation and its solutions tend to a nontrivial equilibrium,
namely, the Gaussian kernel if m = 1, and the ZKB profile if m > 1. The asymptotic
profile of the original problem is now read as the transformation of that equilibrium
in terms of u.
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Suppose now that you consider the more complicated model equation
up = Au™ — uP, ®)

with B, m > 1. This is a model of nonlinear diffusion in an absorptive medium, well
known in the literature. The absorption term is not an asymptotically small perturba-
tion in principle. Now, we happen to know that the decay rate for this equation is the
same as before when 8 > B, = m + 2/N. If this is so we perform the same type of
re-scaling to find

6, = A(6) + C, 1), CO,7)=—e76°, o=(B-PBlx. (6

In this form we arrive at an asymptotically small perturbation of the rescaled PME
(4) and the problem falls into the scope of the text. The appearance of the small
exponential factor reminds us that we have lost the scale invariance in the original
equation (5). Curiously, the most difficult analysis occurs for the critical case 8 = By,
where we will concentrate the attention, and is naturally done with the S-Theorem.

Description of the applications

In Chapter 3 we perform a first application of the S-Theorem to study the asymptotic
behaviour of nonnegative solutions for the equation of superslow diffusion which in
N-dimensional geometry takes the form

up = A(e™ /"), )

It can be treated as a formal limit case of the PME with m = o0o. We separately
consider the initial-value problem for # > 0 in a bounded domain ¢ R¥ and
the Cauchy problem in R x R.. Interesting transformations are needed to present
those problems as small asymptotic perturbations of some well-known equation, and
this is an important aspect of the theory. It turns out that in these two problems the
asymptotic patterns look similar, but the rescaled variables and perturbed equations
differ essentially. In the case of the bounded domain the rescaled equation with small
asymptotic perturbations is rather involved and is given by

41 2
0, = A(B) + L0 AO + = (0 —01n6 AD)
T
41n’t 41nt
+ 80— — 61n6 AD + 56 (In6)2 AD,

with A(8) =6 A8 + 6.
In Chapter 4 we describe the asymptotic behaviour of a PME with absorption in
the case of a critical exponent,

up=Au" —uP in RY xRy, B=pB=m+2/N. (8)
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The exponent B, (often called critical Fujita exponent for equations with source
term +u?) has been chosen because it is precisely the case when more standard
methods of asymptotic analysis fail. Briefly explained, the difficulty stems from the
fact that the two operators on the right-hand side have effects of the same order of
magnitude, as can be easily shown by dimensional analysis or scaling. Thus, in the
rescaling calculations done above for 8 > By, we see that the perturbation is not
small when we pass to the limit 8 — B.. Consequently, the problem exhibits a
typical critical situation, which is called a resonance in physical parlance. One of
the main consequences is that the decay rate is modified to include extra logarithmic
factors (a typical feature of resonance in dynamical systems).

The authors used the S-Theorem in 1991 to prove that all weak, space-integrable
solutions behave for # — 00 as a unique orbit of the PME without absorption, and
the resonance is felt as a rescaling in « and x by slow-growth unbounded factors, log-
arithmic functions of time. This is an example of a transitional behaviour between
two different asymptotic structures for 8 < B4 and B > B,. The behaviour for the
critical exponent 8 = B, then-inherits certain features of both the subcritical and the
supercritical ranges. This kind of transitional behaviour has a quite general nature
and occurs for other equations; we will present some other instances of the phe-
nomenon. The paper [169] was the first instance of an application of the “dynamical
systems approach with asymptotically small perturbations” developed in this book.

Chapter 5 deals with the asymptotics of a problem involving extinction. Ex-
tinction in finite time is the term which denotes the phenomenon whereby a posi-
tive solution of an evolution process becomes identically zero after a finite time T,
u(-, T) = 0. The phenomenon is also called complete quenching. It is well known
that this is not possible for the standard problems associated to the heat equation and
other parabolic evolution operators with good coefficients. The phenomenon arises
in nonlinear equations due to the presence of terms that either degenerate or are sin-
gular at u = 0. The extinction of a solution is usually associated with the formation
of a singularity for the solution at the level of some derivative. Therefore, it can be
understood as blow-up for the derivatives of the solution, with the advantage that the
L® norm of the solution itself remains bounded. In this chapter we still consider the
PME with absorption, but the presence of a strong absorption term produces extinc-
tion. We concentrate on the equation with another critical exponent

ur=Au" —uP, m>1, p=pi=2-m<l1. )

In this case the singular behaviour close to the extinction time, t — T < 00, is
governed by the ODE without diffusion:

Ur = —Uu

This is the first time that we face the case of singular perturbation: the limit equation
is of lower order than the original PME with absorption. As is well known from the
theory of singular perturbations, the passage to the limit becomes a hard problem. In
order to apply the S-Theorem, we need to prove several estimates on rescaled orbits
in a metric space C, with a singular weight.
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We follow with two chapters where the S-Theorem is used in combination with
the technique of Matched Asymptotic Expansions. This is a very important tool of
asymptotic analysis that is needed to reflect the multiple behaviour of many problems
arising in several applied fields, hence our interest in the study that combines both
machineries. Chapter 6 is devoted to the study of the fast diffusion equation with
critical parameter

up=Au" in RN xRy, m=m,=(N—-2)/N, N=>3. (10)

We establish that m = m, corresponds to the transition between two different types
of self-similar asymptotic behaviour in a neighbourhood of the critical value for m >
my (self-similarity of the first kind given by the ZKB solution), and 0 < m < my
(self-similarity of the second kind). As a consequence, we describe two different
asymptotic domains, the outer and the inner ones, with quite different asymptotic
scalings. The leading part of the asymptotics in the outer domain is governed by a
radial solution of the first-order equation (the conservation law)

v+ N(v(N_z)/N)s =0, where s =In|x|,

to which the stability theory applies. The inner one has a simple “flat” shape and
some parabolic properties are necessary to match both the asymptotics.

Chapter 7 is devoted to the PME in exterior domains. We need to use expansions
in the inner and outer regions and a matching procedure (the approach is different
from that in Chapter 6). The main feature of the topic is the role played by singular
solutions as asymptotic limits in the S-Theorem. We address here the critical situa-
tion that appears in dimension two and produces a typical In (¢) factor in the delicate
matching process.

We cover next some topics from fluid mechanics. In Chapter 8§ we turn to a clas-
sical problem and study a singularly perturbed dynamical system which describes
some special blow-up patterns of the Navier—Stokes equations in R?,

Uy +uuy +vuy = —py/p +vAu,
Uy + uvy +vvy = —py/p + vAv, (11)
uy +vy =0,
where (u, v) is the velocity field, p is the pressure, p > 0 is the constant density

and v > O is the constant kinematic viscosity. We are interested in the particular
solutions similar to the famous stationary von Kdrmdn solution of the form

u=/(; fz,t)dz, v=-yf(x,t), p=h(x,t).

They describe a plane jet with a stagnation point at (0, 0) and free boundaries. Then
the function f solves a semilinear nonlocal heat equation

ft+(\/0 f(z’t)dz>fx—f2=vfxx
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with free boundary conditions. We study the first stable blow-up pattern which gives
the asymptotic structure of the plane jet for the Navier-Stokes equations. In par-
ticular, we prove that asymptotically this generic blow-up pattern is described by a
nonlocal semilinear first-order Hamilton-Jacobi equation

fz+(f0xf(z,t)dz)fx—f2=0,

so that this asymptotic analysis falls in the scope of a singular perturbation theory.

In Chapter 9 we study a problem of blow-up, i.e., the solutions become un-
bounded in a finite time, and the profile that is formed at this time is under inves-
tigation. Blow-up is a major area of research in nonlinear evolution equations, cf.
[32, 180, 286]. We consider the semilinear equation with ‘“almost linear” reaction
term '

up = tgx + (1 +u)In>(1 +u) in R xR,. (12)

The study presents an important aspect, i.e., the asymptotic degeneracy of the
parabolic equations near blow-up. More concretely, we prove that for bounded bell-
shaped initial data ug(x) > 0O, the asymptotic behaviour as ¢t — T is described by
the nonlinear quadratic Hamilton—Jacobi equation

(ux)2

o + (14 ) In%(1 + u),

Ur =

and the S-Theorem makes it possible to pass to the limit in a singularly perturbed
dynamical system. Finally we prove that this equation exhibits regional blow-up
where the blow-up set for bell-shaped data has a finite length equal to 27. We also
study periodic blow-up patterns and their localization. This work was developed in
the paper [173], written in 1991, and was a major source of inspiration in developing
the idea of reduced omega-limit sets, an important ingredient in the sharp formulation
of the S-Theorem.

In Chapter 10 we present a general theory of such degeneracy effect of conver-
gence to Hamilton—Jacobi solutions. It applies to a class of quasilinear equations
with different types of blow-up, such as single-point, regional or global blow-up. As
a basic model, we classify the asymptotics of the quasilinear heat equation

up =V - (In°(1 + u)Vu) + (1 '+ W) (In(1 + u))Pleth-o (13)

for different values of the parameters ¢ > 0 and 8 > 1. It is important that this
equation describes all three types of blow-up: (i) regional for 8 = 2, (ii) single-point
for B > 2 and (iii) global if 8 € (1,2). The asymptotic blow-up patterns are proved
to have different space-time structures in these three cases.

We perform in Chapter 11 the asymptotic analysis of a fully nonlinear parabolic
equation from detonation theory. The parabolic equation

ur + L(ux)® = fleuury) +Inu (¢ > 0) (14)
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with a smooth strictly monotone increasing function, f(s) = In((¢’ — 1)/s), de-
scribes unstability of the square Zel’dovich—von Neuman-Doering (ZND) wave in
detonation theory. The model is due to Buckmaster and Ludford. We study the fi-
nite time quenching behaviour as ¢ — T when an initially strictly positive solu-
tion touches the singular level u = 0, where the diffusion-like operator degenerates
and the absorption term Inu becomes singular. We establish that this behaviour is
described by a singularly perturbed linear first-order equation of Hamilton-Jacobi
type. It is important that the solution does not admit any proper continuation beyond
quenching time, for ¢+ > T. This means complete collapse of the ZND-wave at the
quenching point.

We add a last Chapter 12, where we briefly describe further, sometimes not very
straightforward, extensions and generalizations, and give a list of related references.
We show how to extend our dynamical system approach by using an extra topolog-
ical structure in the metric space and hence modifying the notion of the uniform
Lyapunov stability. Under a suitable assumption on the corresponding topological
structure of the reduced emega-limit set of the autonomous equation, we then obtain
more detailed description of the omega-limits of a class of individual orbits. Another
new application is time-dependent homogenization-like problems for the PME or
other parabolic equations with highly oscillatory coefficients.

We also demonstrate that the S-Theorem exhibits natural applications to a num-
ber of problems for higher-order parabolic equations with reaction/absorption-like
terms, and as typical examples we treat the semilinear 2m'-order equations

up = —(—A)"u £ uP'u in RY xR, (15)

with integer m > 1 and exponent p > 1, which induce typical examples of semi-
groups without order-preserving properties (available for m = 1 only via the Maxi-
mum Principle).

Summing up, the nonlinear models described above play the role of key examples
in explaining some crucial distinctive features of the applications of the stability the-
orem (Chapter 1) to a class of similar perturbed dynamical systems. Of course, such
an analysis admits various extensions and generalizations to wide classes of prob-
lems, where a similar kind of perturbations occurs. We describe such generalizations
in Remarks at the end of each chapter.

The equations and problems we deal with were mostly well known and were ac-
tively studied from different points of view in the last two decades in the framework
of the growing theory of nonlinear partial differential equations, and the questions
of (local-in-time) existence, uniqueness and regularity of solutions are documented
in the literature. We present suitable references in the final section (remarks and
comments on the literature) of each chapter. Though we have selected applications
involving nonlinear heat equations, the abstract stability theory, on which the analy-
sis relies, has a wider scope, and some of the examples are directed to promote such
extension.

This book presents a unified approach to the study of the asymptotic behaviour
of several classes of nonlinear equations. The main results were obtained by the au-
thors during the last twelve years. These classes of asymptotic problems for nonau-
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tonomous dynamical systems were not discussed in monographs on the theory of
nonlinear PDEs.

Prerequisites and use

The book assumes some knowledge of the fundamentals of partial differential equa-
tions, ordinary differential equations, and functional analysis. A certain exposure to
dynamical systems will be helpful as background to understand the main result and
the general philosophy. The examples of application which form the bulk of the book
assume some knowledge of the main topics of nonlinear partial differential equations
of evolution type and their asymptotics, €.g., global or local well-posedness and Lya-
punov techniques. It is not an absolute prerequisite to read our corresponding intro-
ductory text but it explains the context and why the present method is useful. Much
of the necessary material on basic theory and asymptotics of nonlinear heat equa-
tions is summarized in Chapter 2, where further references are given. More general
references are [293] and [286], which deals in great detail with blow-up problems.
Explanations, references and hints will be given as the text proceeds.

The book is meant for an advanced graduate level and can be taught to students
in mathematics and physics interested in evolution equations and asymptotics in one
semester if a proper selection of the topics is made. It can be combined with standard
evolution equations and asymptotics topics into a whole year in various ways. The
whole text could serve as a reference work on the S-Theorem and its applications.
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1

Stability Theorem:
A Dynamical Systems Approach

This chapter contains the statement and proof of the abstract stability result on
which the theory of later chapters relies. The large-time behaviour for different
PDEs of evolution type is seen in an abstract setting from the unifying point of
view of dynamical systems posed in an arbitrary metric space.

1.1 Perturbed dynamical systems

We are interested in describing the asymptotic behaviour of different evolution pro-
cesses that offer difficulties when treated by standard methods. In all of them we
arrive after suitable transformations at a general formulation in the form of a nonau-
tonomous dynamical system

ur=Bu,t) =Aw)+Cu,t), t>0;, u()=uop,

where A is an autonomous operator and C is an asymptotically small perturbation,
so that along a typical solution u(z), there holds C(u(¢),t) — 0 as ¢t — 00 in some
(possibly weak) sense. We want to prove that for large times the orbits of the original
evolution problem converge to a certain set of limits of the orbits of the autonomous
equation. In order to make this statement precise, we define the w-Ilimit set of the
given orbit, w(u), and we select a certain subset €2, of the global w-limit set of the
autonomous equation
uy = A(u).

In this notation we want to prove that
w(u) C Q.

The precise result demands carefully stated assumptions and conclusions which
make up the main stability theorem.

Results on asymptotic convergence of solutions of evolution equations are ob-
tained under suitable assumptions on the character of the evolution. Typically such
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assumptions concern the original equation under consideration. An important feature
of our method is that it places the main assumption on the limit equation: it consists
of the hypothesis of uniform stability in the Lyapunov sense on the set €2, with re-
spect to the flow generated by the autonomous equation. In some applications this
is asking too much, but a convenient modification works: we need only establish the
stability of a certain reduced omega-limit set. It is important that the convergence
result does not depend on any information about the rate of decay of the perturbation
in the equation.

Finally, let us remark before we proceed that we formulate the problem using
the language of abstract differential equations, but this has to be understood as a
convenient way of presenting the result in view of the typical applications. Actually,
the general result deals with the large-time behaviour of classes of curves defined in a
metric space which enjoy certain properties, and no differentiation is essential in the
statements or arguments. In the applications we will use the fact that the curves under
consideration are solutions of differential equations to make sure that the needed
properties hold.

1.2 Some concepts from dynamical systems

We will be working in this book with solutions of differential equations which can
be viewed as continuous curves, u € C(I : X), with values in a complete metric
space X. Typically X will be an LP-space or other function space but this chapter
will make no such restriction. We denote by d(-, -) the metric in X. I can be the real
line but it is usually an infinite interval of the form I = [#(, 00) (a forward half-line),
and fyp = to(u) may depend upon the curve under consideration. Curves which are
solutions of an evolution process are often referred to as trajectories of the process or
orbits, though the last name usually refers to the image of the curve, cf. [188]. Thus,
for any curve u with domain R we define the complete orbit as

y) ={u(s) : s e R} C X,

and the complete trajectory as the complete curve, which is identified with the set
['(w) = {(s,u(s)) : s € R} € R x X. We are mainly interested in forward orbits of
curves defined in a half-line. The forward orbit starting at time ¢ > f9(u) is defined
as

Y @, 1) = {u(s) : s > t}. (1.1)

If t = 0 we drop the ¢, yT(u) = y+(u, 0). We include the case ¢ < #y, when we
write y T (u, t) = ¥ (u, 19); this may seem unnecessary but is convenient in writing
general statements. Usually, the solution of an evolution process (i.e., a differential
equation) is uniquely determined by its initial data and then it is convenient to use
the notation y+(u, t) = y(ug, t), where u(zy) = ug € X, but uniqueness in terms
of the initial data is not a requirement for what follows.

The w-limit set of a curve u : I — X is defined as
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w@) ={f € X: 3 asequence {tj} - oo suchthat u(z;) — f}. (1.2)
It is a subset of X that can also be written as

w(u) = (] clos(y™ @, 1),

1>

where clos(E) denotes the closure of a set E in X. As before, for solutions of
differential equations, we also write the omega limit in terms of the initial data,
w(u) = w(up). The following result is well known, cf. [189], [297].

Lemma 1.1 w(u) is a closed subset of X. If y*(u,t) is relatively compact, then
w(u) is nonempty, connected and compact.

Generalizing the previous definition, if we have a family of forward curves £
with values in the same metric space, we introduce its w-limit set as

w(€) = () clos(|_J ¥*,1).

t>1 ue€

It can be alternatively described as follows: w(€) = {f € X : 3 a sequence {¢t;} —
oo and a sequence of solutions {u;} C &£ such thatu j(¢;) — f}. It must be observed
that the w-limit of a set is usually larger than the union of the w-limits of its elements,
Ul @) : u € £} # w(€), cf. example at the end of Section 1.5.

Families of solutions appear naturally in the study of differential equations as the
solutions of an initial-value problem of the form

Ur = A(u)’ > Oa M(O) = ug,

where A does not depend on time. Typically, the problem generates a continuous
semigroup, i.e., a continuous map S : X x [0,00) — X, such that, if we write
S(t)x = S(x,t) as usual, the maps S(¢) satisfy

(1) SOup =ug forevery ug € X,

(1) St + s)ug = S(@)S(s)ug forevery ugpe X and ¢,s > 0.
In that case we can write the unique solution # = u(¢) with initial value ug as
u@) = St)ug fort > 0.

We need two further definitions. A set E C X is called (forward) invariant under
S if for every t > 0, we have S(¢)E C E. A set F is said to attract a set E if
d(SH)E,F) — 0Oast — o0.

Here is a typical result in this setting, where we write the w-limit in terms of the
initial values of the orbits, cf. [189].

Lemma 1.2 (i) If E C X is nonempty and its orbit Yy (E) is relatively compact,
then w(E) is nonempty, compact and attracts E.

(ii) If E C X is connected, then w(E) is connected.

(iii) For any set E C X, for which w(E) is compact and w(E) attracts E, the set
w(E) is invariant.
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The concepts of invariance and attraction can be immediately generalized to a
family £ of curves defined on a common interval, say I = [0, 00), with no relation
to semigroups. We just define S(#)(E) = {u() : u € L,u(0) € E} for every set
E C L(0) = {u(0) : u € L}. Then, parts (i) and (ii) of the above result remain true,
even if we do not necessarily have the semigroup hypothesis S(¢)S(s) = S(¢ + s).
The invariance may not hold in this general setting.

1.3 The three hypotheses

Our asymptotic result can be formulated in a topological way with no reference to
PDE:s. It concerns the asymptotic properties of two families of curves £ and £, map-
ping forward-infinite intervals of the real line into a metric space (the same for both
families). A set of three basic hypotheses are imposed on these families of curves
or trajectories. These hypotheses are briefly summarized as compactness, conver-
gence and reduced stability. Here is the detailed statement and preliminary analysis
of them.

(H1) COMPACTNESS. We consider a class £ of functions u € C([tg,0) : X)
defined for t > #o(u) with values in a complete metric space X. We assume that
the corresponding orbits {u(?) : t > ty} are relatively compact in X. Moreover, we
consider the trajectories after a time shift

W) =ui+r1), ¢t tv>0,

and assume that the set of curves {u”(#)} with index T > g is relatively compact in
L2 ([t0, 00) : X).

It follows from (H1) that the forward orbit ¥ (u, t) is relatively compact in X.
Hence, the omega-limit w(«) is nonempty and compact.

(H2) CONVERGENCE. L is a small asymptotic perturbation of £, in the following
sense: given a curve u € L, if for a sequence {¢j} — oo the sequence {u(z i+ D)
converges in L{’(;’C([O, 00) : X) as j — oo to a function v(¢), then v belongs to L,.
Before we proceed further, we make some remarks and comments. Because of
intended application, we think of £ as a suitable family of solutions of an evolu-
tion process described (at least formally) by a nonautonomous abstract differential

equation

ur =Bu,t), t>0. (1.3)
This is to be compared for large times with the autonomous equation

vy =AW), >0, (1.4)

more precisely, with a particular family of solutions L, of the latter equation.
Assumption (H2) is our way of stating that (1.3) is an asymptotically small per-
turbation of (1.4), i.e., B(u, t) tends to A(u) as ¢t — 00 in the very weak sense just
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described. Hence, (1.4) is called the limit equation and (1.3) is the perturbed equa-
tion. The curves v in L, obtained in such a passage to the limit will be called limit
solutions.

In order to make a difference between the two equations, we will use the standard
dynamical systems notation for the solutions of the perturbed equation (1.3), and
notations with stars for the limit equation (1.4). Thus, we write y,;" (v, 1), we(v) and
w4 (&) for a solution v € L, and a set of solutions £ C Ly, respectively.

Since hypothesis (H1) implies that ¥ ™ (u, ¢) lies in a relatively compact subset of
X, it follows from (H2) that every limit solution v(¢) of u has a relatively compact
forward orbit in X.

Proposition 1.3 Givenu € L, any limit solution v € L can be defined for allt € R,
i.e., it has a complete orbit. Moreover, for every vy € w(u), there is a limit solution
v with initial data v(0) = vo, and the complete orbit y,(v) is contained in w (u).
Therefore, w,(v) is nonempty and compact.

These facts need not be true for the whole class L. In the typical applications to
follow, both £ and L, are classes of weak or other generalized solutions on which
weak regularity requirements are assumed. In accordance to this generality, the pas-
sage to the limit of hypothesis (H2) only imposes that the limit v(¢) of the sequence
{u(tj + 1)} € L be a solution of the limit equation in L, a condition that can often
be obtained for generalized solutions of nonlinear heat equations under minimal or
no estimates on the derivatives. Besides, no uniqueness result is implied up to the
moment.

Let us now turn our attention to the third and main hypothesis. A main point in
our result is that no stability properties are assumed on (1.3), but rather on its limit
equation. We start by identifying the set where the omega limits of the solutions
to equation (1.3) must lie. This is an important ingredient of the formulation. More
precisely, we need to find a set 2, C X large enough to contain the iterated omega
limits, by which we mean the w,-limits under (1.4) of the w-limits of the perturbed
equation (1.3). This means that

Q, D U{w*(v) v € Ly, v(0) € wu), ue L) (1.5)

We can now formulate the last basic hypothesis in the strict form needed for the
intended result to hold. Let Yy = | J{w(u) : u € L}.

(H3) REDUCED UNIFORM STABILITY FOR EQUATION (1.4). We assume the exis-
tence of a closed subset 2, of X satisfying (1.5) which is uniformly Yo-stable in the
sense of Lyapunov: for every ¢ > 0, there exists § = §(¢) > 0 such that if v is any
curve in £, with v(0) € Yy and d(v(0), 24) < 4, then

d(v(t), Q24) <& foreveryt > 0.

Notice that we impose the stability of the set 2, with respect to perturbations
in Yp, thus the name reduced stability. It does not imply that the set 2, is invariant
under the evolution defined by (1.4), but this will be true if we strengthen the stability
condition by eliminating the requirement v(0) € Yj.
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In line with comments already made, we point out that no special assumptions
are made in the three hypotheses on the sense in which equations (1.4) and (1.3) are
satisfied, or on other properties of the evolution. Thus, though it is usually true that
(1.4) generates a semigroup in a metric space, such a property is of no concern for
the general result we are aiming at. In particular, the class £ may consist of only one
solution. We will discuss later in Section 1.5 practical conditions under which the
last hypothesis holds, less dependent on what w () is.

1.4 The S-Theorem: Stability of omega-limit sets

We may now formulate and prove the announced main result, to be referred to in the
book as the S-Theorem.

Theorem 1.4 Under assumptions (H1), (H2) and (H3);-the w-limit set of any solu-.
tion u € L of the perturbed equation (1.3) is contained in 2. In other words, each
orbit of (1.3) is attracted by 24 ast — 0.

Roughly speaking, the omega-limit set of the class of solutions £, of the au-
tonomous equation is stable under arbitrary perturbations of the equation which are
asymptotically small in the sense defined above.

Proof. We divide the proof of the theorem into a series of lemmas. To begin with, for
every fixed solution u € £ and every ¢ > 0, we define the good and bad sets

Ge ={t >0:du(@), Q) <&}, (1.6)

Be ={t >0:du(), 2) > &}. (1.7)

Clearly, G UB; = (0,00) ,G: N By =@ and B, C B, if 0 < &1 < &2. The sets B
are open, the sets G, are closed. Of course, these sets depend on u which we take as
fixed. We begin the study of G, and B, for large ¢ with the following lemma:

Lemma 1.5 For any ¢ > O, there exists a sequence {T;} — 00 contained in the
set Gg.

Proof. Let {tj} — o0 be an arbitrary sequence. By (H1) the sequence of functions
{u(t; + s)}, is relatively compact; by (H2) we may assume (after passing to a subse-
quence if necessary) that as j — 00, u(¢j + s) tends to v(s), a function in Ly (i.e.,a
solution of (1.4)), uniformly on compact subintervals of [0, c0). Then v(¢) € Yy for
all z.> 0. Since €2, contains the omega limit of all solutions in £, with data in Yy, it
follows from (H3) that v(s) converges to 2« as s — 00, hence there exists so > 0
such that for s > sg,

d(v(s), ) < 5. (1.8)

The convergence of u(¢; + s) to v(s) implies that there exists jo such that
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d(u(tj +s),v(s) < 5 (1.9)
forevery 0 < s < spif j > jo. Together, these inequalities imply
d(u(tj + s0), S0) < d(u(tj + s50), v(s0)) + d(v(s0), 2) < &,

which means that {t; + s0}j>j, C Ge. Now put T; = t; + so. 0
We turn our attention to the set B,. Since B, is an open set, if it is not empty it
can be written as a countable or finite union of mutually disjoint open intervals

Be=JIt, It =@ b)), (1.10)
n

with 0 < a; < b;. Lemma 1.5 rules out the possibility of an unbounded interval
going to +00. We have more.

Lemma 1.6 The sequence of lengths {l, = b%, — al} is bounded; 1,, < ¢ = c(e, u).

Proof. 1t is based on the same arguments as the proof of Lemma 1.5. Assuming
that there exists a sequence [, — o0 and that the intervals (a;, b;) are ordered, we
take #, = (a; + b;)/2 and apply the previous argument to obtain an s such that
tj +so € G for a subsequence {¢;}. Since, by definition of I}, t; +¢ & G, for
any t € (0,1;/2) and l; — oo, we arrive at a contradiction. Therefore {/,,} must be
bounded. |

Finally, we prove that B; is empty or bounded. Figure 1.1 illustrates our analysis.

Fig. 1.1. Scheme for the proof of the S-Theorem. Pj = u(j), @ = u(tj + ¢). Dashed lines
bound neighbourhoods of . Solid curves represent orbits of v and u starting from ¢ = 0,
=1 j» TESD.
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Lemma 1.7 There exists a constant C = C (g, u) such that
(C,0) € Ge . (1.11)

Proof. If (1.11) is false, there exists a subsequence {n;} — 00 such that I,fj C B;.
After relabelling, we may assume that n; = j and that ajf > aj . Let

r=mn(£55(5)].

where § is the function appearing in the definition of uniform stability of €2,, (H3).
Since n < &, we have Be C By and to every interval I3, there corresponds an equal

or larger interval I] = (aj, b) contained in B,. Some of the intervals I] may be
repeated, though only a finite number of times each since

b;? — a;.’ < c(n, u). (1.13)

By (1.13) there will be an infinite number of different intervals left. From the defini-
tion of By it follows that if #; = a;?, then

du(t;), ) =1n. (1.14)

Passing again to a subsequence that we still denote by {j}, the sequence of functions
{u(tj + t)} converges uniformly on compact subintervals of [0, o0) to a solution
v(t) € L. Therefore, for j > jg, we have

d((0), u(t;)) <n, (1.15)
so that from (1.14) d(v(0), i) < 27 and by the stability hypothesis (H3)
d(v(t), ) < 5 (1.16)

for any 0 < ¢ < o0. Now, the convergence of u(t; + t) towards v(z) implies that
given ¢ = c(n, u), there exists j; > 0 such that

du(tj+1),v() <5 (1.17)
forO0 <t <c(n,u)and j > j;. Then
du(tj + 1), Q) < dutj +1), v(®) +d@(), Q) <, (1.18)

hence
[a5, 651 C [a], a] +c(n, )] € Ge

forall j > ji, a contradiction with the definition of the intervals (a., b;). a
End of Proof of Theorem 1.4. By Lemma 1.7, for any solution « € £ of (1.3) and
every ¢ > 0, there exists #; = t; (g, u) > 0 such that for ¢z > ¢,

d(u(t), Q) <e.

It is then clear that the w-limit set of the orbit {x(¢)} is contained in Q. O



1. Stability Theorem: A Dynamical Systems Approach 9
1.5 Practical stability assumptions

1.5.1 In the simplest formulation that we will find in some of the applications,
we may take the set 2, as the global omega-limit set of the unperturbed dynamical
system (1.4) in the class Ly, defined as

ws(Ly) = {f € X : I asequence {tj} — 00 and a sequence

of solutions {v;} € L, such that v;(t;) = f}. (1.19)

We may also replace the condition of reduced Yp-stability by plain stability. We
then have a stronger version of (H3) which reads

(H3a) UNIFORM STABILITY FOR EQUATION (1.4). We assume that the subset 2, =
wy(Ly) is uniformly stable in the sense of Lyapunov: for every ¢ > 0, there exists
8 = 8(&) > O such that if v is any solution of (1.4) in £, such that d(v(0), Q2,) <4,
then

d(v(t), Q) <e foreveryt > 0.

It is immediate from the stability property that 2, is invariant under the evolution
defined by (1.4), i.e., for every solution v with initial data v(0) € 2, we have
v(t) € Q2 for every ¢t > 0. In most cases studied below, €2, consists of stationary
points, i.e., v(#) = v(0) for all ¢ > 0.

1.5.2 In many cases we will consider a smaller set than w,(Ly). This happens
for two reasons. Firstly, it is natural from the statement of the theorem that we look
for a set as small as possible. Secondly, the global wy-limit set may not be stable
in the sense of (H3). In practice, we will observe that the w-limits of the solutions
of equation (1.3) have special properties inherited in the limit from the solutions of
equation (1.3), which is then seen as a kind of regularization of (1.4). In other words,
there exists a certain subset Y C X such that

Y 2| Jlow) :ueL)=ro, (1.20)
and the evolution is defined in L, for all initial data v(0) € Y. We then take
Q* = C()*(Y). (1.21)

The choice of Y will be of great importance in some of the applications. We call the
set given by (1.21) the reduced w-limit set of equation (1.4) relative to the subclass
Y. If we impose hypothesis (H3) with Y replacing Y; and 2, as defined above, then
Theorem 1.4 holds. In all cases considered in this work we have used equality as
in formula (1.21), but inequality will also be acceptable: 2, must be closed and
4 D wy(Y).

1.5.3 A further remark in the last situation concerns the convenience of checking
condition (1.21) only on orbits, i.e., replacing it by

Q. D U{w(v) :v(0) € Y}, (1.22)

which is sufficient for the theorem to hold. The following result shows that under
certain conditions both concepts are equivalent.
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Proposition 1.8 Let Y C X be a compact set and let Sy be a continuous dynami-
cal system defined on Y with relatively compact orbits. If Q. is closed, stable and
attracts all orbits of Y in the sense of (1.22), then 2, 2 w4 (Y).

Proof. Let x be the limit of a sequence {v;(¢;)} with v;(0) € Y and {¢;} — oc.
By compactness, v;(0) tends to some y = w(0) after passing to a subsequence if
necessary. By the attraction property, given § > 0, we have d(w(t), Q) < §/2
for all large ¢+ > T. On the other hand, for j large and by continuity we have
d;(T), w(T)) < §/2. It follows that d(v;(T), Q) < é. But v;(T) € Y is the
initial data of the trajectory v defined by v(¢z) = v(¢ 4+ T). Using now the stability,
we conclude that for all large j > jo,

d(;), Q) <¢ forall t>T,

which implies that d(x, ©2,) < ¢ for every ¢ > 0, hence x € Q,. O
Let us remark that, when in the situation of Theorem 1.4 we take the minimal
choice Y = w(u), then for every v € L, with v(0) € Y, we have v(¢) € Y, hence the
evolution is defined in Y and the orbits are relatively compact. On the other hand, it
is easy to construct simple examples of finite-dimensional dynamical systems where
the result is false if €2, is not stable. For instance, we can construct a gradient flow in
a ball Y in the plane and take as €2, the set of equilibria, which is assumed to contain
a saddle. Then €2, attracts the orbits, but it is not stable and the global omega limit
w4 (Y) contains the unstable manifold of the saddle, which is not contained in £2,.

Further comments on these issues of reduced omega limits are given in Chapters
6,9 and 10.

Remark. It is important to notice that all three hypotheses are necessary for The-
orem 1.4 to hold. Indeed, it is not difficult to find examples of simple dynamical
systems for which only one of the three conditions fails, and then the result is not
true. We ask the reader to supply three counter-examples corresponding to each of
the hypotheses.

1.6 A result on attractors

This section contains extra material on the attractive properties involved in our main
result and is not directly needed in the applications. The S-Theorem can be formu-
lated as the property of a certain set €2, to attract individual orbits of £ in the metric
of X, i.e., that for every orbit u(t) € L, we have d(u(t), Q) — Oast — 00. A
natural question in dynamical systems is whether it also attracts compact families of
orbits in the same uniform way, by which we mean that given a compact family of
data u(0) € B and given ¢ > 0, there exists zy > O such that

d(u(t), Q2«) < e for every u such that u(0) € B, and every ¢t > 1.

The following result, proved in Hale’s book [189], Chapter 3, solves the passage
from attraction of orbits (called there points) to the attraction of compact families
(compact sets) for continuous semigroups (as those generated by an autonomous
equation).
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Proposition 1.9 Let J C X be a compact, invariant and stable set for a continuous
semigroup {S(), t > 0}. If J attracts points in a neighbourhood of J, then it attracts
compact subsets of a bounded neighbourhood of J.

We only know how to pass from point attraction to attraction of compact sets in
the setting of perturbed dynamical systems by imposing a rather strong hypothesis
on the smallness of the action of the perturbation in (1.3) on 2 as ¢t — o0. This is
formulated as
(H4) We assume that 2, € X is closed and stable under asymptotic perturbations
in the sense that for every ¢ > 0, there exist a neighbourhood U of 24 and § > 0
small enough and #p > O large, such that whenever u € £ and d(u(#;), 2.) < § for
t > to, then

du(), Q) <e forevery t > 1t. (1.23)

We state our theorem for sets of orbits of (1.3) in the subclass L£g defined for
t > 0, and call the set of initial data Xo = {#(0) : u € Lo}. We denote by u(t; x) the
solution with initial data u(0; x) = x € Xp.

Theorem 1.10 Suppose that we have assumptions (H1), (H2), (H3) in the setting of
Section 1.3 and (H4), and assume that the orbits of Ly depend continuously on their
data at t = 0. Then Q2 attracts compact sets of orbits for equation (1.3) in the sense
that

du(t; x),2) >0 as t —> o©

uniformly in x € E, where E is any relatively compact subset of Xg C X.

Proof. We consider a compact set E C Xg. Since €2, attracts the orbits of (1.3) by
the S-Theorem, for every x € E, the orbit u(z; x) with initial data x converges to
Q.. Therefore, for every € > 0, there exists #(x) > 0 such that d(u(z(x); x), Q) <
8/2. By continuity, there exists an open neighbourhood U (x) of x in X such that
du(t(x);y),24) < & for any y € U(x). We may take ¢(x) > ty of hypothesis
(H4). Now, the compactness of E implies that there is a finite covering of E by these
neighbourhoods: E C U(x;) U--- U U(xy). Then for every t > T = max{z(x;) :
i =1,..,n}and every x € E, we have x € U (x;) for some i, hence by (H4)

du(t; x), Q2) < &.

This completes the proof. m]

Remarks and comments on the literature

1.1. The S-Theorem was introduced by the authors in the paper [169], 1991, in the
study of the critical case of the PME with absorption, see Chapter 4. The reduced
omega-limit and reduced stability were used for the first time in [173] in the de-
scription of regional blow-up for the semilinear heat equation, which is discussed in
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Chapter 9. A survey of applications of this stability theorem is presented in [176].
In the applications to PDEs that follow, X is a subspace of an infinite-dimensional
functional space, typically L? (D) for some domain D € R and some p € [1, o0].

In problems discussed in this book, some of them having really nontrivial dy-
namics, the set $24 happens to be one point. It is remarkable that in those cases the
S-Theorem provides a complete identification of the omega-limits of the perturbed
equation without using any specific information about the vanishing perturbation
C = A — B, apart from hypothesis (H2).

However, there are applications in which the set €2, appearing in the theorem is
too large, i.e., w(u) # 4, even in the reduced case, and then further independent
analysis is needed to determine the range of w (1) inside 2. The selection rule may
take different forms depending on the problem under consideration. This is where
more precise properties of the perturbation C, or the estimate of its size, enter the
picture. Thus, in Chapter 4 we perform the selection by using the fact that C(u, ?) is
not integrable in time for some fixed u = f € .. More specifically, in that problem
€2, consists of fixed points for equation (1.4) and we exclude from w (1) all points
(i.e., functions) of €2, but one, because the perturbation is not integrable, C(f,¢) &
L'(R, : X) for those f € Q.. Note that this lack of integrability is compatible
with the assumption that C is asymptotically vanishing. A different selection rule is
based on the transversality and intersection properties of the orbits of family £ with
respect to a subset of orbits of L, in a neighbourhood of €2,. Such a technique is
introduced in Chapters 5, 9, 10 and 12, and the properties are shown to hold because
the families are solutions of one-dimensional second-order parabolic equations to
which the Sturmian theory of Intersection Comparison applies.

1.2. There is a huge literature on asymptotic methods for dynamical systems, es-
pecially after the work of Lasalle [236] for autonomous ordinary differential equa-
tions. We refer the reader to the works by Babin and Vishik [23], Dafermos [89],
Hale [189], Ladyzhenskaya [232], Henry [191], Temam [297] for PDEs and infinite-
dimensional systems. An abstract approach is performed in [50], [289].

1.3. The concept of limiting equations is a basic concept in the theory of singular per-
turbations, for instance in Prandtl’s boundary layer theory [288]. Most of the work
on perturbation concerns problems which have a small parameter &, and the perturba-
tion does not vanish with time as in the present case. Limit equations for ODEs with
asymptotically vanishing perturbations have been considered by several authors, like
Markus [245] and Artstein, see Appendix A in [236].
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Nonlinear Heat Equations: Basic Models
and Mathematical Techniques

This chapter collects a series of results on the theory of nonlinear heat equations
that may be useful to the reader for the correct understanding of subsequent
chapters. Some of the material informs about the general philosophy of these
equations, a second part develops standard subjects of this theory that allow the
reader to compare the standard methods with the ones based on the S-Theorem.
In particular, we use the example of the porous medium equation as a convenient
setting to introduce-the techniques of fixed and continuous scaling that play a big
role in the theory of asymptotic analysis of nonlinear problems. Scaling is our
way of presenting what is also known in the literature as renormalization. The
last part contains technical results that will be used later on.

2.1 Nonlinear heat equations

We want to remind the reader of some facts that underline our work in subsequent
chapters. Different linear, semilinear and quasilinear versions of parabolic second-
order equations enter many of the textbooks on the theory of PDEs and several fields
of their applications. By a nonlinear heat equation we mean a second-order evolution
PDE formally of parabolic type, loosely speaking a variation of the classical heat
equation. Apart from their interest as mathematical models in the applied sciences,
this class of equations is mathematically interesting because in a certain sense it
exhibits minimal complexity. This is an interesting dynamical feature, it suggests to
the researcher the idea that such equations should be understood first.

In our examples we usually deal with two differential operators acting simulta-
neously: a diffusion (second-order) operator plus another, typically lower-order op-
erator describing, e.g., a process of reaction, convection or absorption. We will be
specially interested in cases in which both processes act opposite to each other and
have similar strength. The nonlinear interaction between such operators makes the
mathematics of the equations nontrivial. Indeed, we usually work with two opera-
tors (sometimes, a single one to be split by means of a nonlinear transformation)
of not more than the second order of differentiation. On the other hand, this setting
describes various nonlinear phenomena, arising in quite different fields of applica-
tion, like nonlinear heat conductivity, combustion, detonation, filtration of gases and
liquids in porous media and plasma physics. Indeed there have been a lot of beauti-
ful general results obtained in such problems in the last fifty years, especially those
which deal with fundamental mathematical questions of existence, uniqueness, reg-
ularity of weak (generalized) solutions, as well as optimal conditions on their global
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solvability. We are not going to treat most of them in any detail, and actually it is im-
possible in a single book. We consider nonlinear equations for which local existence,
uniqueness and general regularity are well known nowadays.

Semilinear, quasilinear and nonlinear heat equations

Let us describe next the main types of nonlinear heat equations that will appear in
the sequel. The main diffusion operators to be considered are those from the heat
equation

ur=Au in 0 =RN xR, 2.1)

: . o 2 : :
where A is the spatial Laplacian in RV, A = ZIA_’:I 5@;7 , and its variants where Au
i

is replaced by an elliptic operator of the form

8%y 0 ou
Au = . Au = —_— o )
u Z aijj 9%; 3xj or u (IZ]:) axj (alj Bx,-)

The multiple applications of the heat equation are well known in the mathematical,
physical or engineering literature.
We then have the nonlinear models like the porous medium equation (PME)

ur=Au", m>1 (u=>0), (2.2)

which is called the fast diffusion equation if m € (0, 1). This equation occurs in
diffusion of liquids and gases in porous media and in processes of electron and ion
conductivity in plasma, and in all these applications the restriction u > 0 applies.
But it is mathematically interesting to allow for negative values of the unknown
u = u(x, t). In that case, we need to redefine the equation in a suitable way for it to
be still parabolic. Our choice is

ur = Au|™ w) = V- (m|u|™ V). (2.3)

The investigation of the existence of generalized solutions of the initial and
boundary-value problems for the equations of nonlinear diffusion of those types has
been extended to more general forms, like the so-called filtration equation

up=A®w)+ f, (2.4)

where @ is a monotone nondecreasing function and f € L}OC(Q). An interesting
equation of this type with exceptional nonpower nonlinearities is the equation of
superslow diffusion

ur = (€ ") ax (2.5)

where the nonlinearity ® (1) = e~!/# decays as u — O faster than any power law
& (1) = u™ in the PME. In a formal asymptotic sense, for a certain class of solutions,
this equation corresponds to m = 00, a critical exponent.
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Another fruitful direction of extension is given by the p-Laplacian equation

(PLE)
w=Apu=V-(|VulP™2Vu), p>1 (V=grad,) (2.6)

and its many variants, all of them quasilinear, (formally) parabolic equations. The
p-Laplacian operators are typical for nonNewtonian (dilatant) liquids.

Adding lower-order terms to the right-hand side is an important option, and the
zero-order term represents an absorption or a reaction, depending on its sign. In the
latter case, when this term is positive or at least nonnegative (a source-like term), we
obtain, for instance, the semilinear reaction heat equation

ur = Au+ f(u), 2.7)

where the exponential source term f(u) = e* corresponds to the famous nonsta-
tionary Frank—Kamenetskii equation in combustion theory formulated in 1938. The
power approximation f(u) = u? leads to the semilinear heat equation

us = Au+uf, p>1. (2.8)

Such an approximation makes sense for the PME operator, which gives the quasilin-
ear heat equation

ur=Au" +uf, m>1, p>1, (2.9)

and for the p-Laplacian version u; = Ayu+u?, p > 2, g > 1. More combina-
tions are possible and appear both in the mathematical and the applied literature.

In the above equations, the nonlinear interaction of the operators creates inter-
esting structures. We will focus on the generic ones, which exhibit a stable spatio-
temporal structure. Sometimes, we are interested in the corresponding countable
spectrum of patterns.

It is most interesting that when these equations contain strong superlinear com-
bustion terms they exhibit an important nonlinear phenomenon called blow-up when
the solutions become infinite in finite time, i.e., ast — T < 00. This corresponds to
the effect of adiabatic explosion in combustion theory. Such a highly nonstationary
behaviour of the reaction-diffusion process creates a series of interesting mathemat-
ical problems, in particular, the asymptotic behaviour of solutions as ¢ — T. This
is an important subject of study of the present book. We will consider one case of
blow-up solutions to a semilinear equation with a nonlocal nonlinearity.

On the other hand, if we add a negative term to the diffusion-like operators,
we obtain quasilinear heat equations with absorption. For instance, the PME with
absorption

u; = Au™ —u?. (2.10)

Though the absorption term prohibits the growth of solutions and blow-up is impos-
sible, we arrive at the questions of asymptotic behaviour, as ¢ — 00, of bounded so-
lutions, where we want to know the rate of decay and shape of the asymptotic profile.



16 A Stability Technique for Evolution Partial Differential Equations

We show that in different parameter ranges such a behaviour can be quite different,
especially for some special critical exponents. In the case of strong, p € [0, 1), or
singular, p < 0, absorption, bounded solutions extinguish in finite time, as ¢t — T,
thus creating an interesting finite-time extinction asymptotic behaviour.

We introduce and study some other singular phenomena for quasilinear parabolic
equations including fully nonlinear equations, of the general form

u; = F(u, Du, D*u) (2.11)

with suitable F monotone in the last argument. A simple example of such equations
is the so-called dual PME,

up = |Au™Au, m>1,

which appears in elastoplastic media. Finally, the transformations and limit processes .
that we perform on our equations will lead us into so-called Hamilton—Jacobi equa-
tions,

u; = F(Du),

or their viscous counterpart, u; = ¢ Au + F(Du), along with many variants, see
Chapters 5, 10. The most typical Hamilton-Jacobi equation is the Eikonal Equation,
ur = |Vul?.

We will give further details as the equations appear in the corresponding chapters.

2.2 Basic mathematical properties

In most of the cases, we consider nonnegative solutions u = u(x,t) > 0. The non-
negativity property of the solutions is guaranteed by the maximum principle which
applies to all the equations.

The heat equation

In the case of the heat equation and its uniformly parabolic linear variants, the results
are well known. Thus, the Cauchy problem for the heat equation with initial data

u(x,0) = up(x), xRN, (2.12)

admits a unique solution u(x, t) defined in Q = RM x R, under the following
conditions: u is locally integrable and

/]RN Iuo(x)leal"|2 dx < 00 (2.13)

for any a > 0. If we impose the restriction that this is true for any a < ag, then the
solution exists in some time interval 0 < ¢ < T. The solution can be represented by
the convolution with the fundamental solution of operator L = 3/3t — A,
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1
u(x,t) = W /RN uo(y) exp{—|x — y|2/4t}dy. (2.14)

See Figure 2.1.

It follows that the solution depends continuously on the data in various norms,
so that the problem is well posed. It is often convenient to make a particular choice
of such possible spaces. The most typical for our purposes is X = LY'(RN), and then
we look at the collection of maps S; : ug — u(t), where we write u(t) = u(-,t) €
X. The existence and uniqueness result can be reformulated as the existence of a
continuous semigroup in X. In fact, it is a contraction semigroup:

Theorem 2.1 The maps S; : uo +> u(t) are order-preserving contractions on
X = LY (RN). More precisely, fort > 0,

1 (@) — u2@)+liL1@yy < 1@1(0) — u2(0)+ 1l 1wy, (2.15)

where (-)+ denotes the positive part, max{-, 0}. In particular, plain L'-contraction
holds:

lur @) — u2@llL1@yy < u1(0) — u200) [ L1 wwy- (2.16)
The maximum principle also follows from property (2.15).

Property (2.15) is called T-contraction and was introduced by Bénilan in order
to tie together the concepts of contraction and order. We will see that this property
extends to other initial- and boundary-value problems for many of the nonlinear heat
equations we consider. Actually, the property of T-contraction holds for the heat
equation not only when X = L!(R"), but also in the Lebesgue spaces X = L?(R")
withany 1 < p < oo.

Supersolutions and subsolutions. The maximum principle is applied in comparison
theorems: in order to show that two solutions are ordered, e.g., u1 —uz > 0, we apply
the maximum principle to the difference in a suitable parabolic domain, not neces-
sarily a strip of the form RV x (0, T), and check that u; — u; > 0 on the parabolic
boundary. Let us point out a crucial detail for the applications: the conclusion holds
even when u1, uy are not solutions, if u; is a supersolution and uy a subsolution. In
the first case, we ask that u; ; — Au; > 0, in the second, u3 ; — Auy < 0. Super- and
subsolutions (also known as upper and lower solutions) satisfying the corresponding
parabolic differential inequalities are well known in the classical parabolic and el-
liptic theory, hence, we will not insist at this point. Note only that by approximation
these ideas extend to the usual classes of nonlinear degenerate equations of elliptic
and parabolic types, though they do not extend to higher-order equations.

Strong maximum principle. Besides, the maximum principle admits a strong form
that can be formulated as follows: if the initial data ug > 0 a.e. in RV, ug = 0, then
the solution is positive everywhere for t > 0, u(x,¢) > 0 in Q. This property fails
for many of the nonlinear diffusion models in various degrees, and such failure is
tied to difficulties in the regularity theory.
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Another important aspect of the heat equation theory is regularity: the solutions
given by formula (2.14) are C* smooth in Q even for general data as stated above
(regularizing effect). This is true for all equations of the form u; = Au+ f(u), where
A is a uniformly elliptic operator with constant coefficients and f is, say, a C*™ real
function with linear growth as u — ©co. But the property will dramatically fail for
the nonlinear models.

Other problems. The heat equation is also typically posed in bounded space do-
mains with Dirichlet, Neumann or other boundary conditions. Nonlinear theory ap-
pears when we put nonlinear boundary conditions of the form

0
-a—‘i + B(w) = g(x),
n

where B is a real function. But a main area of development of nonlinear analysis
is that of free boundary problems for the heat equation, where the space domain
is allowed to change to respond to overdetermined boundary conditions. The most
famous of these problems is the Stefan Problem, the typical prototype for the de-
scription of the phenomena of change of phase. Much attention has been also given
to the free boundary problem with fixed-gradient conditions of combustion theory,
where we impose the conditions u = 0, |Vu| = ¢ > 0 on the moving boundary.

The porous medium equation

We will also focus on the Cauchy problem, but we will restrict most of our attention
to the case of nonnegative solutions, # > 0. The Cauchy problem (2.2), (2.12) does
not possess classical solutions for general data in the class ug € LI(RN), ug > 0
(or even in a smaller class, like the set of smooth nonnegative and rapidly decaying
initial data). This is due to the fact that the equation is parabolic only where u > O,
but degenerates at the level u = 0. This has, as a consequence, finite propagation,
whereby, for instance, a solution with compactly supported initial data preserves the
property for all later times. A free boundary or interface appears to separate the sets
{u = 0} and {u > 0}. It can be proved that near moving interfaces solutions cannot
be very smooth. We need to introduce a concept of generalized solution and make
sure that the problem is well posed in that class. On the other hand, when ug > ¢ > 0
the equation does not degenerate, and the quasilinear parabolic theory can be used
to produce classical positive solutions u > ¢. This is a considerable help in building
the generalized theory. These are the main features.

Definitions. By a solution of equation (2.2) we will mean a nonnegative function
u(x,t) defined for (x, ) € Q such that
(i) viewed as a map

t = u(,t)=u()), 2.17)

we have u € C((0, o0) : L'(RM)),
(ii) the functions u™, u, and Au™ belong to L1((z1, #2) : LY(RV)) forall0 < #; < 1,
(iii) equation (2.2) is satisfied in the sense of distributions in Q.
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By a solution-of the Cauchy problem we mean a solution of (2.2) such that the
initial data are taken in the following sense:

u(t) >ug in L'®RY) ast—0. (2.18)

In other words, u € C([0, o0) : L1 (R¥)) and u(0) = uy.

This definition is usually called in the specialized literature a strong solution. It is
suitable for our purposes since the Cauchy problem is well posed in this setting, but
it is not the unique choice; we could have used the concept of weak solution, where
we merely ask ™ and V,u™ to be locally integrable functions in RY x [0, co) and
the equation is satisfied in the sense that

f {up; — Vou™ - Vyip)dx dt + /'uo(x)cp(x, 0)dx =0 (2.19)

holds for every smooth test function ¢ > 0 which vanishes for all large enough |x|
and ¢. See [304] for a discussion of those equivalent alternatives.

Theorem 2.2 The Cauchy problem is well posed in the framework of strong solu-
tions. The maps S; : ug > u(t) form a continuous semigroup in L! (RM).

The orbits ¢ — u(t) of the continuous semigroup are continuous functions from
[0, o0) into L!(RY). Here are some of the main properties of the solutions.

Property 1. CONTRACTION. For every two solutions u; and up, we have

1@1@®) = w2y < 1@10) — w2 @) lii@ny, ¢ >0 (2.20)

This is the T -contraction property.
When we apply the principle to the pairs (u1, u2) and (13, 1) and sum the results
we get plain L!-contraction

1 (2) — u2@ll L1 wyy < u1(0) — u2(0) | L1 gy (2.21)

In other words, the maps S; : ug — u(¢) form an order-preserving semigroup of
contractions on L!(RY). Let us point out a main difference with the heat equation:
contraction is not proved in any space L?(RV) with 1 < p < oo.

Property 2. MAXIMUM PRINCIPLE. The maximum principle follows from this
property when we apply it to solutions such that u1(0) < u;(0), i.e., when (11(0) —
u2(0))+ = O, since this value is preserved for ¢+ > 0. Hence, u;(0) < u3(0) a.e.
implies u1(t) < uy(t) a.e. forallz > 0.

On the other hand, the strong maximum principle does not hold for solutions
which touch the degenerate level, ¥ = 0: the existence of free boundaries, to be
discussed below, is a witness to that fact.

Property 3. MASS CONSERVATION. The solutions of the Cauchy problem satisfy
the law of mass conservation
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f u(x,t)dx:/ ug(x)dx. (2.22)
RN RN

When u > 0 this means ||u(2)||; = |lugll; for all # > 0. The property will also be
true for solutions of any sign, but then it does not imply conservation of L!-norm. It
is also true forO0 <m < 1if m > (N — 2)/N, but not below that value.

Property 4. SOURCE-TYPE SOLUTIONS. The PME is a nonlinear equation and there
is no equivalent to the representation formula (2.14). However, there is a particular
family of solutions that plays a role equivalent in some sense to the fundamental
solution for the heat equation. Indeed, the PME with m > 1 admits a one-parameter
family of special solutions

Ux,1;C) = t~*F(xt™B; 0), (2.23)

with parameter C > 0. The functions U(x, t; C) were variously called source-type
solutions, fundamental solutions, Barenblatt-Pattle solutions, Zel’dovich—Kompa-
neetz—Barenblatt solutions (ZKB), the last being our preferred option in this text.
They are given by the explicit formula

! N 1
Fi = (€ =k, e= s B=go—p5s @2

F is called the profile, « and B are the similarity exponents. C > O is a free constant
and k is fixed, k = (m — 1)B/2m. We have U™ ™! = (C t*# — k|x|*)/t. See Figure
2.2. The fact that the fundamental solutions are self-similar is important in what
follows, the fact that they are explicit is not.

Comparison of infinite space propagation for m =1 and finite propagation for m > 1.
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damental solutions of the HE at different of the ZKB solutions at different times.

times.

The investigation of the PME during the last decades has shown that the source-
type solutions play a big role as a paradigm of the properties and behaviour of wide
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classes of solutions in several respects, most notably, in what concerns regularity and
large-time behaviour.

We point out that the U(x, ¢; C) are strong solutions of (2.2), but, strictly speak-
ing, they are not solutions of the Cauchy problem because they do not take L! initial
data. Indeed, it is easy to check that U/ converges to a Dirac mass as ¢t — 0 (this is
the reason for the name “source-type solutions”). This fact acts strongly in the proof
of asymptotic convergence, cf. Subsection 2.3.

Property 5. BOUNDEDNESS. Solutions with L' data are bounded fort > t > 0.
Moreover, there exists a constant C = C(m, N) > 0 such that

0 <u(x,t) <Cllugl’ +=VF  with B =1/[N(m — 1) +2]. (2.25)

This is the so-called L! — L effect. The maximum principle implies on the
other hand an L*® — L effect: ||u(f)|loo < ||#(0)]lco. This can be easily extended

toan L? — L effect for any 1 < p < oo (by interpolation).

Property 6. LIMITED REGULARITY. Bounded solutions are uniformly Holder con-
tinuous fort > t > 0. This statement cannot be improved for general solutions.

Therefore, strong solutions are continuous but have limited additional regularity.
The source-type solutions are an example of limited regularity. A finer question is op-
timal regularity, i.e., finding the best Holder exponent. In one dimension the answer
is @ = min{1, 1/(m — 1)}, which corresponds to the property of Lipschitz continuity
of the pressure v = u™~!. The question is not completely settled for N > 1, where
the exponent is lower, since v need not be Lipschitz continuous. Here is a situation
where the source-type solutions are not the paradigm.

Property 7. APPROXIMATION. We recall that all solutions with positive data are
positive everywhere and C® smooth. Combined with the L! contraction, this im-
plies that every strong solution is the limit of smooth and positive solutions, with
approximation in the norm of L® (R : L' (R")). The local regularity implies that
the convergence also takes place locally uniformly in Q.

Property 8. FINITE PROPAGATION PROPERTY. If the initial function ug is compactly
supported, so are the functions u(-, ¢) for every ¢t > 0. Under these conditions there
exists a free boundary or interface I"(u) that separates the regions P(u) = {(x,t) €
Q :u(x,t) > 0} and {(x,2) € Q : u(x,t) = 0}. It is precisely defined as the
boundary of the positivity set

T'(u) = 9P (u). (2.26)

Equivalently, it can also be defined as the boundary of the support of u, which is
the clostre of P(u). According to [68] this interface is an N-dimensional Holder
continuous hypersurface in RV+1,

We do not need to start with a compactly supported solution to have a free bound-
ary I' # @, since the property of finite propagation is quite general. I" is nonempty as
long as uq vanishes on a set that contains a ball. Even vanishing at one point xg will
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do, depending on the behaviour of u( near xg. In this extreme case I is an interval
of the form {(xo, ?) : 0 <t < t,} for some #,, > O called the waiting time.

On the other hand, finite propagation has the further property that the support is
noncontracting in time (this is sometimes called retention property, because points
of positivity are conserved). Moreover, the support eventually reaches all points of
the space (penetration property).

Property 9. ENERGY ESTIMATES. Another aspect of the regularization of solutions
with time is obtained by multiplying the equation by 4™ and formally integrating by
parts. We arrive at

t
/ um+1(x,t)dx+(m+l)/f |V(u'”)|2dxdt§/ u"tl(x, T)dx (2.27)
RN /RN RN

for all 0 < t < ¢. Since we know by the previous properties that u(t) € LP(RY)
for all p > 1, in particular p = m + 1, we conclude that Vu™ is uniformly bounded
in L2(RY x (t,t)) in terms of the mass of the initial data. The justification of the
calculation can be found in [304]. In the same spirit, multiplication by (u™), and
integration by parts gives

t
c f f ((uﬂzﬂ),(x,t))zdxdta- f IVu™(x, £)|?dx < [ IVu™(x, 7)|%dx, (2.28)
/RN RN RN

where ¢ = 8m/(m + 1)?. Combining with the previous one, it gives a bound for
3u™tD/2y /8t in LZ(RN x (t,t)) in terms of the mass of the initial data, and a
better bound for Vu™ in L ((z, 00) : L2(R")). These and other gradient estimates
were developed by Bénilan, cf. [36].

The next estimate is due to Aronson-Bénilan [16] and plays a big role in the
study of the Cauchy problem for the PME.

Property 10. FUNDAMENTAL REGULARITY ESTIMATE AND CONSEQUENCES.
Any nonnegative solution of the Cauchy problem satisfies the estimate

a(m-—1) N

o= .
m Nm-1)+2

C
Aw™ 1 > - where C = (2.29)

This implies another interesting estimate: u; > —a u/t. Moreover, conservation of
mass is equivalent to [ u; dx = 0, so that the last estimate leads to

/lu,(x,t)]dx < g;‘CE‘/‘u(x,t)dx. (2.30)

The latter is an special estimate because it is not one-sided. On the other hand,
the one-sided estimate (2.29) is exact precisely for the source-type solutions (2.23)
that play a key role in our theory.

Property 11. SCALING. One of the most important properties of the PME is scal-
ing invariance. It is simpler to state in terms of the pressure v(x,?) = u™"!. The



2. Nonlinear Heat Equations 23

assertion says that any pressure solution v(x,?) will produce a family of pressure
solutions by means of the formula

~ B
v(x,t) = ZEU(AX’ Bt) (2.31)

forany A, B > 0. The choice B = AN~ is precisely the scaling that conserves
mass for the density u.

Property 12. OTHER CLASSES OF DATA. The theory need not be confined to data
in L? spaces. Optimal conditions on the initial data that produce a weak solution
defined in a domain Q1 = R¥ x (0, T) are known and take the form

lim sup R”[N+2/(m'l)]f uo(x) dx < oo.
[x|<R

R—>0

These conditions generalize the condition of square exponential growth that is well
known for the heat equation, and allow for the Cauchy problem to be well posed for
nonnegative solutions in a class of optimal initial data.

On the other hand, the existence and uniqueness theory extends to data and solu-
tions of any sign when the equation is written in the form u; = A(Ju|™ !u), in the
standard setting ug € L!'(RV), where it still generates a semigroup of contractions
in LI(RY), or in classes of growing data. It must be remarked that the mathematical
theory is less polished, and the interest for the applications is up to now smaller.

Super- and subsolutions. Generalizing what was said for classical solutions of the
heat equation, it is natural in the PME to define the classes of weak super- and subso-
lutions by slightly changing the definition. Thus, for a supersolution equation (2.19)
becomes

/ {upr — Viu™ - Vyepldx dt + / ug(x)e(x,0)dx <0 (2.32)

with the same test functions: ¢ > 0 is smooth and vanishes for all large enough |x|
and ¢. The sign is reversed for a subsolution. Then, the 7-contraction is still valid for
u1 — uy since uj is a sub- and u; is a supersolution. The comparison on parabolic
domains is still valid.

Fast diffusion. Let us note that part of this scenario is still true for the range m < 1,
called fast diffusion (the diffusivity coefficient is unbounded at u = 0). Actually,
most of the properties hold as long as m > (N — 2)+/N. The main difference is
that finite propagation does not hold: nonnegative solutions of the Cauchy problem
become immediately positive everywhere for all # > 0.

Other problems. There are a number of initial and boundary value problems that
have been studied in connection with the PME. The properties that have been found
bear a great resemblance with the list we have exhibited for the Cauchy problem,
though the details differ.
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The most frequent problem is the Cauchy-Dirichlet problem posed in a bounded
space domain 2 C R¥ with homogeneous boundary conditions, u(x,?) = 0 on
32 x (0, 00). Again, we get limited regularity of nonnegative solutions, finite propa-
gation, it generates a T-contraction semigroup in L! (RV), and so on. As a difference,
the fundamental estimate is replaced by the coarser one

u
>
=" (m— )t

When the boundary data are not zero, some of the estimates are lost, but weaker
forms can be chosen. Similar observations apply to the Cauchy—Neumann problem.
Other problems that have been investigated in detail are the initial and boundary
value problem in a half line 2 = (0, 00) C R with either Dirichlet or Neumann
boundary data, and also some initial-and-boundary-value problems in exterior do-
mains.

Uz

Other equations

In the case of the p-Laplacian equation, u; = Apu, p > 2, the similarity with the
properties of the PME is striking: (i) the problem is not well posed in the framework
of classical solutions, so that a weak or a strong theory must be introduced; (ii) there
is a T-contraction property, but now it works in all L? spaces, 1 < p < oo; (iii) the
maximum principle holds, but not in its strong form; (iv) conservation of mass holds;
(v) the source-type solutions also exist and are given by explicit formula

Ux,t;C) =t"%F@xt™P; 0), (2.33)
with free parameter C > 0, and
= N 1
F(n) =(C —k m»”/(ﬂ‘“)?z, @ = , B= :
Np—2)+p N(p—2)+p
(2.34)

where k = k(p, N) > 0. This formula holds even for p < 2 as long as N(p — 2) +
p > 0,ie., p > 2N /(N + 1); (vi) boundedness and limited regularity hold, but this
time the Holder space is C1* in space; (vii) the finite propagation property holds for
p > 2; (viii) there are energy estimates; (ix) there is a fundamental estimate, similar
to Aronson-Bénilan’s for the PME,

Ap™) > --?-, (2.35)

where m is a precise power, m = (p —2)/(p — 1) < 1, and C is a certain universal
constant C = C(p, N), cf. [108]; (x) the scaling rule is

1/(p=2)
ux,t) = (ﬂ) u(Ax, Bt). (2.36)

The situation for existence, uniqueness, estimates and regularity of the other non-
linear models mentioned in the previous section is somewhat intermediate to the
models just discussed.



2. Nonlinear Heat Equations 25

2.3 Asymptotics

The mathematical theory of nonlinear heat equations includes as an important subject
the study of the asymptotic behaviour of solutions, which is a fundamental question
for the applications. The asymptotic problem corresponds to long time behaviour if
the solutions are global in time, to finite-time if they have blow-up.

Though the PDEs we consider can be viewed as infinite-dimensional dynami-
cal systems, their strong nonlinear dissipativity properties often play a constructive
role in establishing a lower (or even finite) dimension for the corresponding asymp-
totic attractors. The structure of such attractors and the omega-limits of each indi-
vidual orbit (from a suitable class of solutions) are the main questions of the general
asymptotic theory of nonlinear PDEs. In the theory of finite-dimensional dynamical
systems, a general result for hyperbolic equilibria is known, the Hartman—Grobman
theorem. No result of such kind and generality is available for nonlinear PDEs.

It turned out in the last thirty years of very extensive development of asymp-
totic methods that nonlinear heat equations, even of a simple form with quadratic or
power-like nonlinearities, can exhibit sophisticated and unusual asymptotic proper-
ties. A common feature of such complex asymptotic problems is that in the natural
rescaled sense, the global asymptotic structure of the orbits is driven by a nonau-
tonomous infinite-dimensional dynamical system. This creates an interesting object
for the general asymptotic theory. Each asymptotic problem from such a class turns
out to be very individual, classical asymptotic methods often fail and the asymp-
totic analysis needs special new techniques. A classification of asymptotic patterns
becomes a complicated problem. In fact, it is not exaggerated to say that, unlike
the local existence, uniqueness and regularity problems which have been treated by
unified approaches, the hardest asymptotic problems for nonlinear heat equations
remained open for a long period. A lot of complicated asymptotics for nonlinear
heat equations were discovered in the theory of blow-up in nonlinear diffusive media
with combustion terms, that have important applications. Finite-time blow-up often
exhibits unusual behaviour, and the asymptotic analysis always reduces to the study
of the evolution orbits on essentially unstable manifolds. The structurally stable be-
haviour is then obtained via special rescaling of the orbits.

Turning to more concrete questions, the asymptotic behaviour of the solutions
of the equations under consideration depends on the type of initial and boundary
conditions. It is therefore a quite large subject, and this leads us to make the following
restrictions.

(1) We are mainly interested in the presentation of the results for the PME as a
key example of nonlinear behaviour, with partial attention to the heat equation and
the p-Laplacian equation.

(2) We typically consider nonnegative solutions u = u(x,t) > 0. As we know,
the nonnegativity property of the solutions is guaranteed by the maximum principle
which applies to all the equations.

(3) We consider either the Cauchy problem posed in the whole space with inte-
grable data, or the Dirichlet problem posed in a bounded domain.
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On a general level, it has been pointed out in many papers and corroborated by
numerical experiments that similarity solutions furnish the asymptotic representation
for solutions of a wide range of problems in mathematical physics. The reader is
referred to the book of G.I. Barenblatt [27] for a detailed discussion of this subject.
Self-similar solutions and the forthcoming scaling techniques will play a prominent
role in our asymptotic study.

The reader should note that we are going to describe the behaviour of a whole
class of solutions of equations like (2.1), (2.2) or (2.6) in terms of a simple family
of functions which are solutions of the equation under consideration; moreover, the
models are not in the same class, but in a larger class. More precisely, the special
solutions which represent the whole dynamics at the asymptotic level exhibit a sin-
gularity (at x = 0, ¢t = 0). The use of singular solutions is a curious and quite general
feature in the theory of asymptotic analysis.

Asymptotics for the heat equation

The asymptotic behaviour of the typical initial and boundary value problems in usual
classes of solutions is a well researched subject for the linear heat equation, m = 1.
The classical result for the Cauchy problem says that under the assumptions of non-
negative and integrable initial data ug € LI@®RY), ug > 0, there is convergence of
the solution of the Cauchy problem towards the Gaussian kernel

u(x, 1) ~ exp{—|x|?/4t}, (2.37)

M
@r)N/2

where M = [ ug(x) dx is the mass of the solution (space integration is performed
by default in RY).

In the case of the Cauchy-Dirichlet problem posed in a bounded domain Q C
RV, it is well known that the asymptotic shape of any solution with nonnegative
initial data in L2(2) approaches one of the special separate variables solutions

ui(x,t) =cTi(t) Fi(x). (2.38)

Here T1(t) = e ™, where A = A1(Q) > O is the first eigenvalue of the Laplace
operator in €2 with zero Dirichlet data on 3€2, and Fi(x) is the corresponding positive
and normalized eigenfunction. The constant ¢ > 0 is determined as the L2()-
projection of ug on Fj.

Scaling techniques for the PME. The Cauchy Problem

In the case m > 1 the behaviour of our class of solutions can be described for large
t by a’one-parameter family of special solutions U (x, t; C) given by formula (2.23).
Moreover, for a given solution u, there is a correct choice of the constant C = C (ug)
in this asymptotic result which agrees with the rule of mass equality:

f u(x,t)dx=f Ux,t;,C)dx. (2.39)
RN RN
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It follows that
C = c(m, N) M>—D/IN(m—1+2] (2.40)

We also write Uy, for the solution with mass M and Fjs for its profile. This is the
precise statement of the asymptotic convergence result:

Theorem 2.3 Let u(x, t) be the unique weak solution of the Cauchy problem with
initial data ug € LY (RN), ug > 0. Let Uy be the ZKB solution with the same mass
as ug. Then ast — 00 we have

Jim flu(@) = Un @Ol = 0. (2.41)

Convergence holds also in L°°-norm in the proper scale:

Jim % lu (@) ~Un @)oo = 0 (2.42)

witho = N /[N (m — 1) + 2]. Moreover, for every p € (1, 00) we have
Jim 1% P02 u(r) = Uy (1) Lo ey = 0. (2.43)

The last result follows from (2.41) and (2.42) by simple interpolation, but (2.42)
and (2.41) are (to an extent) independent.

A proof. We will take from the text [307] the main ideas of proof of this theorem.
We will follow the “four-step method”, a general plan to prove asymptotic conver-
gence devised by S. Kamin and Vazquez in 1988, [210], who settled in this way the
asymptotic behaviour both for the p-Laplacian equation, u; = V- (|Vu|P~2Vu), and
for the PME. But the first proof of convergence for the PME in several dimensions
appeared in a celebrated paper by A. Friedman and Kamin in 1980 [123]: it uses a
method of optimal lower barriers that we will not present at this stage and obtain a
weaker version of the result; the reader can consult the original paper or [307]. A
previous proof in one space dimension is due to Kamin in 1973 [203].

Step 1a. RESCALING. In order to observe the asymptotic behaviour of the orbit of
the Cauchy problem we rescale it according to the exponents of the ZKB solution.
Let us see the whole story of scaling transformations in some detail for the reader’s
convenience. We consider a solution u = u(x,t) > 0 of (2.2) in the class of strong
solutions with finite mass introduced in Section 2.2. We apply the group of dilations
in all the variables

uw' =Ku, x' = Lx, t' =Tt, (2.44)
and impose the condition that when u’ is expressed as a function of x" and ¢/, i.e.,
W'(x',t"y=Ku(x'/L,¢'/T), (2.45)

it is again a solution of (2.2). Then
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ou’ Kou (x ¢t K™ 't
P22 D), Ar) = ™ (2, = ).
o1’ TBt(L T) v (W)T = B )(L T)

Hence, (2.45) will be a solution if and only if K T-!=K"L"? je.,
K™l = 12171, (2.46)

We thus obtain a two-parameter transformation group acting on the set of solutions
of (2.2). Choosing as free parameters L and T, it can be written as

1
W) = Lt T~ y(x, £) = (L2/T)"'—'r u(x'/L,¢'/T).
Using standard letters for the independent variables and putting u’ = 7 u, we get

(Tu)(x,1) = LT T~ @1 u (x/L,1/T). 2.47)

This is just another way of writing the scaling law (2.31). Note that we have two
degrees of freedom, which is too much for our purposes. The way the extra parameter
is eliminated depends on the particular problem and is a very delicate question in the
application of the scaling technique to asymptotic problems.

1b. The solution of the indeterminacy in our case is to use one of the parameters to
force the scaling operator 7 to preserve some important behaviour of the orbit. Here
we recall that Uy (x, ¢) has a constant mass; actually, this characterizes uniquely the
solution (which is the ideal orbit we want to approach). Imposing thus the condition
of mass conservation at ¢t = 0, we get

fRN T up)(x)dx = fRN up(x) dx, (2.48)

[RN K ug (%) dx = ./RN ug(x)dx.

It easily follows that K LY = 1. This and (2.46) give the expressions

namely,

K=T"%  L=T% (2.49)
with the exponents (2.24). The transformation we are going to use is finally
(Tu)(x,t) =T *u(x/TP,¢/T).
It is convenient to write the scaling factor in terms of A = 1/T. Then, the solution is
un(x, 1) = () (x, 1) = A"u(MPx, A1) (2.50)

with initial data %o (x) = (Zauo)(x) = A%uo(APx). This is the scaling formula
that we call the A-scaling or fixed scaling. It is in fact a family of scalings with free
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parameter A > 0, that performs a kind of zoom on the solution. To end this step we
note the following important property: the source-type solutions are invariant under
the A-rescaling, i.e., Uy () = T (Up (2)).

Step 2a. UNIFORM ESTIMATES. We want to show that the family {u) (¢), A > 0} is
uniformly bounded and even relatively compact in suitable functional spaces. This
is an important step where we put to work the estimates derived in Section 2.2. It
is crucial that the rescaling performed in the previous step and the estimates match,
otherwise this step could not work.

To begin with our case, the family is uniformly bounded in L (R¥)) for ¢ positive:

/ 'ik(x,t)dx=/ A“u(kﬁx,At)dxzf u(y, \t)dy =M < co. (2.51)
RN RN RN

Using now (2.25), we get

2a/N
72 (5 Dlloo = A%y M)lloo < A* ——C= CM?>IN (2.52)
independently of A, and in the same way
- 20/N
1%, t0)lloo = A% IIuC, oM lloo < A® e C=CM*/Ne, (2.53)
Control of the norms || - ||} and || - oo means control of all norms | - ||, for all

p € [1, 00]. Thus, ||&,(-, t)|l, are equi-bounded for all p € [1, o]
Next, we take o > 0 so that, by the regularizing effect, u(fy) € L™+ (R¥). The
energy estimates of Section 2.2, Property 9, give

fR VI (x, )P < Clto, ITAC, 1)l ) 2.54)

fort > tp > 0. Now, the [|#).(¢)[| .+ are equi-bounded, hence ||V@} (-, ¢)|| 2 are
equi-bounded (for ¢ > ¢y > 0). Moreover, by (2.30) of Property 10, Section 2.2,

(¢
CM%M. (2.55)

ou),
—(t <
| 5 Al <

Using the same argument, we conclude that the norms ||(#)),(#)|l;1 are equi-
bounded if ¢ > t5 > O.

2b. COMPACTNESS. Let us recall the Rellich—-Kondrachov theorem. Let 2 be a
bounded domain with C' boundary. Then
p <N = WbLr(Q) c LI(Q) forallg € [1, p*), -1-}— =
p=N = WbLrP(Q) c LI(Q) forallg € [1, +00),
p>N = Wbhr(Q) c C(Q).
All these injections are compact. In particular, WL'P(Q2) C LP() with compact
injection for all p > 1. In Q@ = RY, the above injections are compact in local
topology (convergence on compact subsets).

1
N

-
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Let us now recall our situation for the family {# }x~1 for ¢ > 9 > 0:
~ o0 1 dy, ooyl 1
ur(x,t) € L, C Ly, ——é;—(x, t)e L7 (Ly) C Ly, (¢t €(t,t)),
and
Vepel?, cLl,

All spaces in time are local in the sense that they exclude t = 0. Here is the conclu-
sion of this step:

Lemma 2.4 The family {u, },>1 is relatively compact locally in L}C‘ ;- Also the fam-
ily (U5 }r>1.

Step 3. PASSAGE TO THE LIMIT. We can now take a sequence {A;} — oo and assert
that u;, converges in LllOC(Q) to some function U':

lim u(x,t) = U(x,1). (2.56)
A—>00

We need to study the properties of such limit functions U (x, t).

Lemma 2.5 Any limit U is a nonnegative weak and strong solution of (2.2) satisfy-
ing uniform bounds in L' (RY) and L®°(RN) forallt > 7 > 0.

Proof. It is clear that, as a consequence of the passage to the limit, U is nonnegative.
Also, U (t) is uniformly bounded in Lland L™ fort > tp > 0, according to formulas
(2.22), (2.25). In order to check that it is a weak solution, we review the sense in
which ), is a weak solution:

f (g — V(@Y - Voldx dt +f’iox(x)so(x,0)dx =0

for all ¢ tested. We have already remarked that our uniform estimates are not good
near ¢ = 0. In view of this, we restrict the test functions to the class

p € CPRYN x (0, 00)),

so that ¢ vanishes in a neighborhood of # = 0. Then

f {Hng — V™ - Voldx dt = 0. 2.57)
With our estimates
u, —> U locally in L}C’,,
u, = U weak™ in L,
V'L}"f — VU™ in Li;t’locweak,

we may pass to the limit in this expression (along a subsequence {Ax} — 00) to get

/ (Ug — VU™ . Vyg)dx dt = 0. (2.58)
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This means that U is a weak solution of equation (2.2). In fact, if 7 > O,

[o,0]
f / {Ugp; — V, U™ -Vx(p}dxdt—}-f U(x, t)ex, t)dx =0.
T JRN RN

Step 4. IDENTIFICATION OF THE LIMIT. Thus far, we have posed the dynamics in
the form of an initial value problem and we have introduced a method of rescaling
which has allowed us to obtain, after passage to the limit, one or several new solutions
of the original problem. These solutions, which we call the asymptotic dynamics,
form a special subset of the set of all orbits of our dynamical system and represent
the (scaled) asymptotic behaviour of the original orbits. Their complete description
becomes our main problem, a problem that may turn out to be difficult to solve.

In the present case the asymptotic dynamics turns out to be quite simple. We want
to prove that the limit U along any sequence {A;} — 00 is necessarily Uys. Both U
and Uy are solutions of the PME for # > 0 enjoying a number of similar bounds.
In order to identify them we only need to check their initial data and use a suitable
uniqueness theorem for the Cauchy problem. The necessary uniqueness theorem is
available thanks to M. Pierre’s work [268].

Theorem 2.6 Weak solutions of the PME in the class u € C((0,00) : LI(RM)),
u > 0, which take a bounded and nonnegative measure (x) as initial data, i.e., such
that

t—

lim u(x,t)<p(x)dx=/ pex)du(x), (2.59)
0JrN RN

for all p € Cp(RY), ¢ > 0, are uniquely determined by the initial measure.

With Cp(RV) we denote the space of continuous and bounded functions in RV . Let
us then worry about the initial data. At first sight it looks easy:

Lemma 2.7 If A — 00, then lim g 5 (x) — MJ&(x) in the sense of bounded mea-
sures.

Proof. As L. — oo, sincea = N 8 > 0,
f on (6) 9 (x) dx = f A%ug(\Px)p(x) dx = f wo(e(y/AP) dy
RN RN RN

which converges to [ uo(y) ¢(0) dy for all ¢ € C§°(RY), ¢ > 0. We have used
the mass value: [py uo(y)dy = M. 0

The problem of the double limit. Unfortunately, the fact that the initial data for
u), converge to M §(x) does not justify by itself that U (¢) takes initial data M 8 (x),
because we do not control the evolution of the i near ¢ = 0 in a uniform way and a
discontinuity might be taking place near ¢ = 0 in the limit A — oo. This is a typical
case of double limits: does
lim lim @) (x,¢) = lim lim @3 (x,?)?
A—00t—0

t—-0A—>00
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Preparing for a correct analysis, the first thing to do is to check that U and Uy, have
the same mass, i.e., that U has mass M. Since

] w(x,t)dx = M,
RN

and u), converges to U in Li’ .-strong locally, we have u), (t) — U(¢) for a.e. ¢ in
LL(R") locally and a.e. in (x, ¢) € Q. By Fatou’s lemma

/ U@B)dx < limf Uy (x,)dx =M,
RN k—00 JRN

hence the mass is equal or less. We have met again a difficulty. This difficulty is in
principle essential. There are examples for rather simple equations in the nonlinear
parabolic area where the initial data are not trivial but the whole solution disappears
in the limit! Should such a “disaster” happen, we refer to it as an initial layer of
discontinuity, an interesting object of study.

Compactly supported solutions. Here the only way the discontinuity can happen is
by mass escaping to infinity, since there is only one mechanism at play, diffusion. In
view of this difficulty we change tactics and try to establish the result under an extra
assumption: we take ug a bounded, 0 < ug < C, and compactly supported function,
supp(uo) C Br(0).

Then, supp(ior) C By /28 (0). Moreover, there exists a source-type solution of
the form V(x,t) = Up(x,t + 1) with M’ > M such that V(x, 0) = Upp(x, 1) >
ug(x). Then,

. (x, 0) = A%ug(xA?,0) < A“L{M/(xkﬂ, 1) = UM/(x, -)1:),

where in the last equality we have used the invariance of U/ under 7). We conclude
from the maximum principle that

~ 1
1) < Uner(x, 1+ X)’ (2.60)

and in the limit U(x, ) < Up(x,t). The bound solves all our problems since it
implies that the support of the family {«} (¢)} is uniformly small for all A large and ¢
close to zero. Indeed, we observe the relation between the radii of the supports of a
solution and its rescaling:

1
Ri(6) = = R(.1). 2.61)

It follows that the support of & (¢) is contained in a ball of radius

1\ 5
— N(m—-1)g _
R=C M) (t + A) (2.62)

with C = C(m, N). Now we can proceed.
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Lemma 2.8 The limit U has mass M for all t > O.

This is a consequence of the dominated convergence theorem since U is bounded
above by a big source-type (ZKB) solution.

Lemma 2.9 Under the present assumptions on ug, we have U(x,t) — Mé(x) as
t—>0,1ie,

t—

lim | U, )e(x)dx = Mg(0) (2.63)
0JRN

for all test functions ¢ € C*(RV).

Proof. Since M = [ U(x,t)dx, we have for ¢ > 0,

| [TU (x, )e(x) — Me(0)ldx| < [1U(x, Dllex) — ¢(0)ldx
< Jini<s UG Dl (x) = 00)ldx + [ .5 1Ux, Dlle(x) — (0)|dx = (%).

By continuity there exists § > 0 such that |p(x) —¢(0)| < e/2M if |x| < 4. Besides,
¢ is bounded so that

lo(x) —9(0)] <2C  (p € CT).

Since U (x, t) vanishes for |x| > § if ¢ is small enough, we get

e
(*)5M—-—+2Cf |U(x,t)|dx < Ks.
M |x|>é
Conclusion. Using the uniqueness result, Theorem 2.6, we can identify U. Hence,
for t = 1 we have uj, (x,1) = Uy (x, 1) in LIIOC(RN). Now, the u; have compact
support which is uniformly bounded in A. It follows that

Uy (x, 1) = Uy (x, 1) in L!-strong.
(We pass from local to global convergence.) The limit is thus independent of the
sequence {A}. It follows that the whole family {u)} converges to Uy as A — oo.

General data. We still have to deal with data which do not have compact support.
The proof in this case implies some nontrividl extra effort for which we refer to [307].
Such type of extra difficulty is quite typical of similar problems.

Step 5. REPHRASING THE RESULT. The argument has concluded, but we still have
to write the conclusion in the original variables and scales. So actually the “4-
step method” is rather a “5-step method”, having a simple end step. Let Fy(x) =
Up (x, 1). We have just proved that

lim |A%u(A\Px,A) — Fyy(x)|| 1 =0,
A—>00

which means with y = A# x that
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Lim f A u(y, &) = A Fy (y/AP) BN dy = 0.
- 00
Noting that Ups(y, A) = A% Fy(y/AP) and that @ = BN, we arrive at

lim ftu(y,x) —Un(y, W)l dy =0,
A—>00
i.e., replacing A by ¢,
Jim lu(y, ) =Upn (y, Dl = 0.

This is the asymptotic formula (2.41).

The continuous scaling version. A different way of implementing the scaling of
the orbits of the Cauchy problem and proving the previous facts consists of using
continuous rescaling, which in this case is written in the form

0(n, 1) = t%u(x,1), n=xtP, 1=Ins, (2.64)

with o and B the standard similarity exponents given by (2.24). Then ¢* and ¢# are
called the scaling factors (or zoom factors), while T is called the new time. With
respect to the A-scaling, we see that the zoom factors change continuously with time,
hence the name. We may also call it time-adapted rescaling.

This version of the scaling technique has a very appealing dynamical flavor and
it will appear often in the sequel. The reader should note that every problem has its
corresponding zoom factors that have to be determined as a part of the analysis.

In our problem, the new orbit 6(7) satisfies the equation

6, = A(O™) + Bn - VO + . (2.65)

It is bounded uniformly in L1(RV) N L®(R¥). The source-type (ZKB) solutions
transform into the stationary profiles F, in this transformation, i.e., F(n) solves the
nonlinear elliptic problem

Af™ +Bn-Vf+af =0. (2.66)

The boundedness and compactness arguments developed before apply here, and
we may pass to the limit and form the w-limit, which is the set

w@) ={f € LI(Q) : 3 {rj} - oosuch that 6(z;) — f}. (2.67)

The convergence takes place in the topology of the functional space in question, here
any L?(2), 1 < p < oo (strong).

The rest of the proof consists in showing that the w-limit is just the ZKB profile
Fy. The argument can be translated in the following way. Corresponding to the
sequence of scaling factors Ax of the previous subsection, we take a sequence of
delays {s;} and define
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Or(n,t) =60(n, T + s). (2.68)

o0

e R LY(RM)); hence, passing to a subse-

The family {6} is precompact in L
quence if necessary, we have

0x(n, T) = 0(n, ). (2.69)

Again, it is easy to see that 6 is a weak solution of (2.65) satisfying the same esti-
mates. The end of the proof identifies it as a stationary solution, which was done in
the previous proof by the other scaling method, the fixed rescaling. Theorem 2.3 can
now be used to characterize the stationary solutions.

Theorem 2.10 The profiles Fys can be characterized as the unique solution of equa-
tion (2.66) such that f € L'(RY), f™ € Ll (R¥) and f > 0. The conditions

loc
f™ e H(RYN), f € C(RY) are true, but not needed in the proof.

Proof. Any other solution f can be taken as initial data for the evolution equa-
tion (2.65) and then Theorem 2.3 proves that the corresponding solution of (2.65)
converges to the source-type solution with the same mass, Fjs. Now, the solution
u(x,t) =t~ f(x t~*) is an admissible solution of the PME which converges in the
rescaling to f. Therefore, f = Fy. m]

The fast diffusion case. The extension of the asymptotic properties proved above to
exponent m = 1 gives as a consequence results that are well known for the classi-
cal heat equation. It is interesting to remark that the proof given here applies (with
inessential minor changes) and is very different from the usual proof, based on the
representation formula.

We can even go below m = 1 and prove similar results for some so-called fast-
diffusion equations, i.e., equation (2.2) with 0 < m < 1. To start with we need two
basic ingredients.

(a) A theory of well-posedness for the Cauchy problem. As we have said, the
results of Section 2.2 apply also in this case with minor easy changes. The main
novelty is that solutions are positive everywhere and C*°-smooth, which is rather
good news in this context.

(b) The second ingredient is the model of asymptotic behaviour. The source-type
solution exists just for m > m, = (N —2)4+/N and it can be conveniently written in
the form ,

Ct )1/““"’) Kt

Up(x,1) = (m 1A+ (x| -P)2l/a=m) °

(2.70)

where B = 1/[2 — N(1 — m)] is positive precisely in that range, « = NS, C =
2m/B(1 — m) is a fixed constant, K = C/=™) ‘and A > 0 is an arbitrary constant
that can be determined as a decreasing function of the mass M = [U(x,1)dx,
A =k(m,N)M™ with y = 2(1 — m)B.

In dimensions N = 1,2 the whole range 0 < m < 1 is covered. However,
the critical exponent, m; = 1 — (2/N), is larger than zero for N > 3. It is then
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proved that for 0 < m < m, no solution of the ZKB type exists (i.e., self-similar
with constant positive mass). The value m, = (N — 2)/N is related to the Sobolev
embedding exponents as the reader will easily realize.

CONVERGENCE IN RELATIVE ERROR. It can be checked that the convergence results
of Theorem 2.3 hold true for m > m,, and the proofs given above are true but for
minor details. However, the fact that the solutions of the fast diffusion equation do
not have the property of conserving compact supports, but rather develop tails at
infinity of a certain form gives rise to a very interesting estimate formulated in terms
of relative error, or in other words, as weighted convergence, that we present next. It
requires a suitable behaviour of the initial data as |x| — oo (similar in decay to the
ZKB solution).

Theorem 2.11 Under the assumption that ug is bounded and ug(x) = O(le"lfzﬁ)
as |x| — oo, we have the asymptotic estimate
- u(x, ) —Ux, 1 M)
lim
1—00 Ux,t; M)

-0 @2.71)

uniformly in x € R™. The condition on the initial data can be weakened into the
integral estimate

/ o)l dy = O(xIN"Fm) as x| - co. 2.72)
ly=xI<lxl/2

In particular, we have ||u(z) — U(t; M)||1 — Oast — oo (asincase p = 1
of Theorem 2.3), and #%|u(x,?) — U(x,t; M)| — 0 ast — oo uniformly in x
(case p = 00), but estimate (2.71) is much more precise because the convergence is
uniform with weight

p=(yF+o/t=m — y=xsF

For the detailed proof we refer to [307].

The cases m < m have different asymptotics. We will return to the fast diffusion
equation with critical exponent m, = (N — 2)/N in Chapter 6 as a case of matched
asymptotics. And we recall that the range 0 < m < (N — 2)/N is still partially
understood, though it is known that a unique second-kind similarity solution with
finite time extinction is stable, [152]; see Chapter 6. This should allow the reader to
get an idea of the difficulty of the problems of nonlinear asymptotic analysis.

Other problems

We will see in the text that many of these ideas can be applied to different prob-
lems, and in doing so there appear different variants. A closely related case with
minimal difficulty is the initial and boundary value problem for the PME equation
in a bounded domain Q C RV with zero boundary data. In that case the asymptotic
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model is not a self-similar solution of the ZKB type, but rather a separated-variables
solution of the form

Ux,t) = (t +¢) F(x), (2.73)

where ¢ = 1/(m — 1) and ¢ > O is a free constant. By default we put ¢ = 0. The
profile F > 0 is calculated as the unique nontrivial solution of the nonlinear elliptic
problem

AF" +aF =0 in$, F=0 ondf.

The continuous scaling is given by
u(x,t) =t"%(x,1), 1 =Int. (2.74)
Then 6 satisfies the nonlinear reaction-diffusion equation
0 = AO™ + b (2.75)

which is autonomous, i.e., time does not appear explicitly. Observe that the new time
7 ranges from —oo to 0o. The initial time # = 0 corresponds to T = —o00, but
displacing the origin of time ¢ allows us to take any finite initial time for 7, like
79 = O if the reader feels more comfortable. The location of the time origin does
not alter the asymptotic problem and is then a question of convenience; precisely
for this reason many authors use a slightly different definition, z + 1 = €%, which
makes ¢ = 0 equivalent to 7 = 0. Equation (2.75) would be the same. We take zero
Dirichlet boundary data, in the sense that 6™ € H(} (£2). The initial data are taken
nonnegative and integrable in §2. The possibility of delaying the time origin and the
regularity theory allow us to assume that 8(x, 0) is bounded, even continuous.

Theorem 2.12 There exists a unique nonnegative, nontrivial self-similar solution of
the PME of the form (2.73), such that if u is any weak solution of the homogeneous
Cauchy-Dirichlet problem, we have

lim t%|u(x,t) —Ux, 1) = lim | ux, ) — F(x)| = 0 (2.76)
t—>00 [—>00

uniformly in S2.

2.4 The Lyapunov method

The work of A.M. Lyapunov in 1892 has had a lasting influence on the studies of
stability not only for ordinary differential equations but also for general dynami-
cal systems, and in particular for PDEs (which are infinite-dimensional dynamical
systems). However, it must be noted that it is not always easy to find the way of
applying Lyapunov’s second method to nonlinear heat equations. Actually, one of
the main points of the present book is to supply an alternative tool when Lyapunov
methods are either nonexistent or difficult to apply.

We devote the next two subsections to derive alternative proofs of the main con-
vergence result for the PME, Theorem 2.3. Both are based on standard implementa-
tions of the idea of Lyapunov Function.
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Lyapunov function for the PME

I. Given an orbit {u(¢)} of the PME in the framework of Sections 2.2 and 2.3, having
mass M > 0, we introduce the functional

Ju (@) =/ lu(x,t) —Upy(x,t)| dx. 2.77)
RN

It is clear from the contraction property that J,,(¢) is nonincreasing in ¢. We get the
following result.

Lemma 2.13 The limit Joo = lim;_, 0 J, (t) > 0 exists.

Note that J,(¢) becomes zero only if u(¢) coincides with the ZKB solution for
some t; > 0; then the equality holds for all # > #; and the asymptotic result is trivial.
Otherwise J, (¢) > 0 for all # > 0. We have to examine this case.

II. LIMIT SOLUTIONS. We perform Steps 1, 2 and 3 of the preceding proof to obtain
a sequence {Ax} — oo such that

(. 1) = U(x, 1) (2.78)

in L'(RY x (#1, #2)). The limit U is again a solution of the PME. It is nontrivial and
has mass M (this is easy for compactly supported solutions and then true for the rest
by approximation).

III. INVARIANCE PRINCIPLE. One of the key features of the use of Lyapunov func-
tions is the following Asymptotic Invariance Property.

Lemma 2.14 The Lyapunov function is constant on limit orbits, i.e., Jy does not
depend ont.

Proof. The Lyapunov function is translated to the rescaled family ) by the formula

Fiy () = fR G, 1)~ Une(x, Dl e = Sy G, (2.79)
It follows that for fixed ¢ > 0, we have
Al_l::;() Ji, (@) = Aango Ju(At) = Joo.

On the other hand, we see that J, depends in a lower-semicontinuous form on u.
Moreover, it is continuous under the passage to the limit that we have performed.
Hence, forevery t > 0, Jy(t) = Jo- o

IV. A LIMIT SOLUTION IS A SOURCE-TYPE SOLUTION. In order to identify U, the
next result we need is the following.

Lemma 2.15 Consider the orbit of u(t) with mass M > 0 and with connected sup-
port for t > to. Then the function J,(t) is strictly decreasing in any time interval
(t1,12), to < 11 < ta, unless u = Uy or both solutions have disjoint supports in that
interval.
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Proof. We consider for ¢t > #; > 0 the solution w of the PME with initial data
att =1,

w(x, 1) = max{u(t), v(t)}, (2.80)
where we put v = Uy, for easier notation. Clearly, w > u and w > v, hence
w(t) > max{u(®), v(t)}, ¢t > 1.

Moreover, we have w(x, ;1) — u(x,t1) = (v(x, 1) — u(x,4))+ and w(x, ;) —
v(x, t1) = (u(x, t;) — v(x, t1))+ so that

Ju(t1)=f (w(t1)~u(t1))dx+f (w(t) —v(n)) dx,
RV RV

while for general ¢ > 71,

Ju(t) +2 /R () - max{u(), vO) dx
= / (w@®) —u(@)dx + / (w() —v(t))dx.
RN RN

Both integrals on the right-hand side are nonincreasing in time by the contraction
principle, hence constancy of J, in an interval [#1, z2] implies that

w(ty) = max{u(t), v()}. (2.81)

In order to examine the consequences of this equality we use the strong maximum
principle.

Lemma 2.16 Two ordered solutions of the PME cannot touch for t > O wherever
they are positive.

This is a standard result for classical solutions of quasilinear parabolic equations,
cf. z[234]. It follows that (2.81) is then possible on any connected open set 2 where
w(-, t2) > 0 under three circumstances:

(1) w(r2) =u(f2) > v(rz),or
(i) w(tr) = v(rr) > u(ty), or
(iihw(r2) = u(t2) = v(f2).

Since the support of the source-type solution is a ball and the support of u is also
connected, we conclude the result of Lemma 2.15. O

Note. If M is not the mass of u, there is still another possibility for constant J,,
namely that the solutions are different but ordered: either u(r) > Up () or u(®) <
Uy (1).

We may now conclude the proof of Theorem 2.3 by this method in the case where
ug has compact support, so that by standard properties of the propagation of support,
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it is connected after a certain time #g. Since the source-type solution penetrates into
the whole space eventually in time and U has a noncontracting support, it follows
that for large ¢ the supports of U and Uy do intersect. Since both solutions cannot be
ordered because they have the same mass, Jy () must be zero since it is not strictly
decreasing by Lemma 2.14. We have thus proved that Jo, = 0 and

U=Upy, (2.82)

which identifies all possible limits of rescalings as the unique source-type solution
with the same mass. This ends the proof. The extension to general data is done by
density, we omit the details. O

V. CONTINUOUS RESCALING. One way of proving the previous facts is by using
the continuous rescaling, formula (2.64). As explained in the previous section, taking
a sequence of delays {s;} we define

Ok, T) =0(n, T + st),
and passing to the limit yields
6k(n, ©) > 8(n, 7). (2.83)

Again it is easy to see that 8 is a weak solution of (2.65) satisfying the same estimates.
For 6 the Lyapunov function is translated into

Jo(t) = f 000, 7) — Fy(n)l dn, (2.84)
RN

and we see that it is continuous under the passage to the limit we have performed.
Let us examine now the situation when Joo > 0. Then ) # Fj and the orbit of 9 has
a strictly decreasing functional, so that for 75 = 71 + & we have

Jo(t1) — Jg(m) = ¢ > 0.
Since 8 is the limit of the 6 we get, for all large enough &,
Jop (11) — Jo (1 + ) = /2.
But this means that for all k large enough,
Jo (1 + sk) — Jo(T1 + sk + h) = ¢/2.

This contradicts the fact that Jg has a limit. The proof is complete. O

Comment. As we had announced, the proof of this section uses several steps of the
former with a completely different end. It contains some fine regularity results that
can make it difficult to apply in more general settings. However, some of these diffi-
culties can be overcome by other means. Lasalle’s invariance principle is a powerful
tool in dynamical systems [236], worth knowing also in this context.
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Another Lyapunov approach for the PME

A different Lyapunov approach is based on the existence of the so-called Newman
functional that can be written for continuously rescaled variables as

B0 = [ 6mo 0+ x ot D)dn,  k=4pm-1), @89

where B is the similarity exponent. The proof of convergence in this instance will be
based on the possibility of calculating the value of d Jp /dt along an orbit.

Lemma 2.17 Let Jy be the functional (2.85). Then for every rescaled orbit of the
Cauchy problem, we have

d 2 k
Jo _ __m /9 VO™ + = n1®)|%dn. (2.86)
dt m—1 m

Proof. In order to analyze the evolution of 7 let us put for a moment

7@ = [ "5+ Ao, ) dn

with A > 0. Let us perform the following formal computations:

4.7 Jdr = / m6™1 + A |n[?) 6, dn
_ f mO™ L + A |n2)(AO™ + BV - (n0))dn
__ / V(m6™ 1 4 A|n[?) - (VO™ + Bn6) dn

== [0Vemom e a ) VT om 4 Sy
m—1 2
In case A = B(m — 1)/2 we can write this quantity as (2.86), which proves that Jp
is a Lyapunov function, i.e., it is monotone along orbits.

These computations are easily justified for classical solutions which decay quick-
ly at infinity. The result for general solutions is then justified by a density argument
using the regularity of the solutions of the PME, cf. [298] (but we can also restrict
the Lyapunov analysis to the above mentioned class of solutions since the proof of
convergence for general solutions is then completed by a density argument).

LIMIT ORBITS AND INVARIANCE. As in the previous section, we pass to the limit

along sequences G (t) = 6(r+s¢) to obtain limit orbits 6 (t), on which the Lyapunov
function is constant, hence d J5/dt = 0.

IDENTIFICATION STEP. The proof of asymptotic convergence concludes in the
present instance in a new way, by analyzing when d Jp /d 7 is zero. Here is the crucial
observation that ends the proof: the second member of (2.86) vanishes if and only if
0 is a ZKB profile. O

The rate of convergence can be calculated by computing d2Jp /dt2, which is not
easy.



42 A Stability Technique for Evolution Partial Differential Equations

2.5 Comparison techniques

We have already discussed a few applications of the standard comparison principle
which guarantees the usual comparison of two solutions of the PME with ordered
initial and boundary data. Such barrier techniques play a key role in the general
theory of nonlinear uniformly parabolic equations. We have seen that the comparison
principle remains valid in appropriate classes of weak (or strong) solutions to the
PME and this holds as a general principle for the types of nonlinear equations listed
at the beginning of the chapter.

We next discuss two other comparison techniques which are somehow related to
each other (but not equivalent) and will play important parts in the sequel. Both are
quite useful in dealing with evolution problems in one space dimension (or in several
under conditions of radial symmetry), but no equivalent tool has been found to deal
with problems in several dimensions. This will have as a consequence a real delay
in the general development of the N-dimensional theory with respect to 1D or radial
N-D.

2.5.1 Intersection comparison and Sturm’s theorems

The historical origin of the nowadays well-known Intersection Comparison tech-
niques is quite remarkable. In 1836 C. Sturm published two pioneering papers in the
first volume of J. Liouville’s Journal de Mathématiques Pures et Appliquées. One of
them [294], devoted to the study of zeros of solutions u(x) of second-order ODEs

W +qgxu=0, xeR, (2.87)

immediately exerted a great influence on the general theory of ODEs. Sturm oscilla-
tion, comparison and separation theorems can be found in most textbooks on ODEs
with various generalizations to other equations and systems of equations. Such the-
orems classify and compare zeros and zero sets {x € R : u(x) = 0} of different
solutions u; (x) and u2(x) of equation (2.87), or solutions of equations with different
continuous ordered potentials g1 (x) > g2(x).

The second paper [295] dealt with the evolution analysis of zeros and zero sets
(i.e., the sets {x : u(x, t) = O}) for solutions u(x, ¢) of partial differential equations
of parabolic type, for instance,

ur = uxx +qx)u, x €[0,2n], t >0, (2.88)

supplied with Dirichlet boundary condition # = 0 at x = 0 and x = 27, and given
smooth initial data at #+ = 0. Two different Sturm results for PDEs like (2.88) are
found and can be stated as follows:

e FIRST STURM THEOREM: Nonincrease in time of the number of zeros (or sign
changes) of solutions.

e SECOND STURM THEOREM: Classification of blow-up self-focusing formations
and collapses of multiple zeros.
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Both Sturm theorems are usually referred together as to the Sturmian argument
on zero-set analysis.

It is curious that most of Sturm’s PDE paper [295] was devoted to the second
theorem on the striking “dissipativity” properties of the evolution of zeros of solu-
tions of linear parabolic equations, where a detailed backward-forward continuation
analysis of collapse of multiple zeros of solutions was performed (actually, it is a per-
fect example of a complete asymptotic theory for such a “singularity formation” and
the “collapse of singularity” immediately afterwards). The result of the first theorem
then was a straightforward consequence of the second one; see p. 431 in [295].

First Sturm Theorem. We begin with a general presentation of this classical Sturm
result for smooth solutions of one-dimensional linear parabolic equations. Let D and
J be open bounded intervals in R. Consider in § = D x J a linear parabolic equation

ur = a(Pluyy +b(P)uy + c(P)u, where P denotes (x,1t). (2.89)

Given a constant T € J, we denote by dS; the parabolic boundary of the domain
S: = SN {t < 1}, i.e, the lateral sides and the bottom of the boundary of S;. Given
a solution u defined on S;, the positive and negative sets of u are defined as follows:

Ut={(P: PeS;, u(P)>0}, U ={P: PeS;, u(P)<0}. (2.90)

A component of U™ (or U ™) is a maximal open connected subset of U™ (or U ™).

Definition. Given ¢ € J, the number of sign changes of u(x, t) at time ¢, denoted by
Z(t, u), is the (finite or infinite) number of components of {x € D : u(x,t) # 0O}.
Alternatively, Z (¢, u) is the supremum over all natural k£ such that there exist k points
from D, x; < xp < -+ < xi, satisfying

u(xj,t) - u(xje1,t) <0 forall j=1,2,...,k—1.
This number has been also called the lap number.

Theorem 2.18 (FIRST STURM THEOREM ON SIGN CHANGES). Let a, b, ¢ be con-
tinuous, bounded and a > (1 > 0in S. Let u(x, t) be a solution of (2.89) in S which
is continuous on S.

(i) Suppose that on 3S; there are precisely n (respectively m) disjoint intervals
where u is positive (resp. negative). Then UT (resp. U™) has at most n (resp. m)
components in Sy and the closure of each component must intersect 3S; in at least
one interval.

(ii) The number of sign changes Z(t, u) of u(x, t) on D is not greater than the
number of sign changes of u on 95;.

We have taken this statement from D.H. Sattinger’s paper [287], 1969 (similar
to K. Nickel’s [253], 1962). These results admit natural extensions to the Cauchy
problem or other problems in unbounded domains if, under necessary assumptions
on initial-boundary data and functional setting, we can control intersections of the
solutions at infinity. We refer to S. Angenent’s paper [8] where a detailed proof is
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available. We omit further details and present other key references in Remarks and
Comments on the Literature. Intersection Comparison via Sturm’s theorem will be
used in proving important estimates on solutions of nonlinear parabolic equations in
this text. We will give further references to the results which are most important for
our applications at the end of this chapter and later on in the appropriate places.

The PME: General principles of intersection comparison. Consider weak non-
negative solution u(x, t) of the Cauchy problem for the one-dimensional PME

ur = Wy in RxRy, u(x,0)=up(x)>0 in R. (2.91)

We assume that uq is a bounded continuous compactly supported function so that
we can start intersection comparison from the initial moment of time ¢ = 0 without
using a suitable regular approximation of, say, L! initial data.

We are going to use the first Sturm theorem in order to compare u(x, t) with a
subset B of some particular (mostly explicit) solutions ef the same equations. Fortu-
nately, we are given an excellent three-parameter subset of the ZKB-solutions (2.23)

B={Ux—a,t—1;C), a,TeR, CeRy}, (2.92)

where a, 7 are translation parameters in space and time, and C is the mass parameter
(2.40). As we know, weak solutions u and of course U/ (for any ¢ > 7) are continuous
in x functions, so that we can define the number of intersections as the number of
sign changes of the difference w(x, t) = u(x,t) —U(x,t):

It,U)y=2Z(t,w) fort>r.

Subtracting the equations for u and U{, we obtain that the difference w satisfies a
linear parabolic equation

wy = (a(x, W)y, (2.93)

where by Hadamard’s formula

1
a= mf Ou + (1 —0OUY™1de > 0.
0

If it satisfies the conditions of the Sturm theorems for linear equations, then the
number of intersections I (¢, If) of two solutions u and U of the parabolic equation
(2.91) obeys the same properties as the number of sign changes of the difference w
satisfying (2.93).

At this stage, the main feature of the intersection comparison technique consists
in using the fact that the property of nonincrease in time holds with respect to any
fixed solution U (x, t) € B. In the simplest case, we study the evolution of tangency
points or inflection points defined as in standard calculus. In other words, intersec-
tion comparison with the set B means that we apply the Sturm theorem relative to an
infinite number of different linearized parabolic equations. The main ingredient of
such a geometric theory is to organize such an intersection comparison in the most
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effective way. Often, we need the subset B of particular solutions to be complete (suf-
ficiently dense) in a suitable geometric setting in order to exhaust necessary spatial
shapes of the more general solution u(x, ¢) under consideration. We also need some
continuity, monotonicity and compactness properties of the subset B to be defined
and checked for a number of problems. Fortunately, (2.92) is a very wide subset of
explicit solutions depending on three parameters {a, t, C} and this is a rare opportu-
nity occurring for nonlinear equations. Therefore, a lot of general properties of weak
L!-solutions can be proved by intersection comparison, and later on we present vari-
ous approaches of using geometric techniques based on playing with multiparametric
families of particular solutions.

The reader should observe that there is a weak point in the above speculations:
for a given subset of the ZKB-solutions, equation (2.93) is not uniformly parabolic,
hence Theorem 2.18 does not apply. Fortunately, we can show that this is not essen-
tial for our purpose, since weak solutions satisfy the important property of admitting
smooth approximations. This fundamental property of the PME (and other equations
discussed above, having weak solutions of limited regularity) can be formulated as
follows: under given assumptions, the unique weak solution u(x, t) of the Cauchy
problem (2.91) can be constructed as the limit

u= lim u, (2.94)
n—00
of sequences {u,} of classical solutions to the PME (2.91) with regularized strictly
positive initial data {ug,} — wug uniformly in R satisfying ug,(x) > 1/n. For in-
stance, we take 1o, (x) = ug(x) + 1/n. Then by the maximum principle, u,(x, ) >
1/n is a classical C%!-smooth solution. It is convenient to fix a monotone sequence
{ugn} decreasing in n; then the corresponding sequence of the solutions {u, (x, t)} is
also monotonically decreasing (by the usual comparison) and hence the limit (2.94)
always exists in the point-wise sense. For better convergence, extra estimates are
needed which are similar to those given above. A continuous regularizing parameter
& > 0 can be used as well, where uo (x) = uo(x) + & gives a monotone in € subset
{ug(x,t) > €} of classical solutions. We refer to A.S. Kalashnikov’s survey [202]
and E. DiBenedetto’s book [96] for further details.
Recall that the limit in (2.94) does not depend on the type of uniformly positive
approximation of the data {ug,}. Moreover, we may include a regular approximation
of the equation (2.91) replacing it by the uniformly parabolic regularization

Uy = ((n—-2 + uz)m/z)xx or u; = (um + n—‘lu)xp

In this case the regularization of continuous data ug is not necessary. [Recall the
continuous approximation with n=! + ¢ > 0.] Then we obtain the regularized
sequence {u,(x, ¢)}, and we need to pass to the limit » — 00 as above. In fact, this is
quite a general principle in the theory of nonlinear singular PDEs, where “good” (we
will use the term proper) solutions are only those which can be constructed, possibly
in a unique way, by regular approximations of both the equation and initial-boundary
data, i.e., via regularized problems. This is true for the PME, where in addition, weak
solutions are the maximal ones, obtained by monotone decreasing approximations.
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When dealing with nonlinear parabolic equations which exhibit singularity for-
mation in finite time (blow-up or extinction), one of our preferred topics, the regu-
lar approximation technique is often the unique way to determine proper solutions
existing beyond the singularity, and such an approach leads to an extended semi-
group theory in the form of discontinuous limit semigroups. We refer for details to
the paper [177], where the extended theory is developed by the authors. See further
comments in the end section.

Continuing with the argument about the PME, we need to perform the same reg-
ularization for all the weak solutions involved in the Sturmian comparison, including
the ZKB solutions. Thus, given an explicit solution 4 € B, we define the corre-
sponding sequence

U= lim U,,

n—>0od0
by approximating the initial data {Up,} — U(x, 0) uniformly, with Uy, (x) > 1/n.
Note that we lose the explicit solution I, but obtain a classical strictly positive ap-
proximation {4, }.
A crucial point of the approximation of both solutions is as follows: we perform
the approximation of the initial data in such a way that the number of intersections
does not depend on n, and moreover

1(0,U,) =1(0,U) forany n.

It is not difficult to find such an approximation. As usual, we deal with one or two
and not more than three intersections, where the geometric configurations remain
reasonably simple. Therefore, we can apply Sturm’s results on sign changes Z (¢, w;,)
of the difference w, = u, —U, satisfying a linear parabolic equation with sufficiently
smooth coefficients. Passing to the limit # — o0 yields a necessary estimate on the
number of intersections I (¢, ) = Z(t, w) of weak continuous solutions u and any
U e B:
1, U) <10, U) for t>0.

Remark on dimensions. One must admit that the intersection comparison philoso-
phy is essentially one-dimensional in space. No suitable notion of a nonincreasing-
in-time “number” of intersections between solutions in R¥ [as (N — 1)-dimensional
hypersurfaces] is available for any N > 2. (This question has a long history; let
us cite a wrong “Herman theorem” in Courant-Hilbert’s book [82], p. 454, and
Arnol’d’s survey [11] where multidimensional generalizations of Sturm theory are
discussed with applications to geometric problems of curves and caustics.) Hence,
we cannot treat in such a way the N-dimensional PME (2.2). But intersection com-
parison arguments apply to the radial solutions u = u(r, t) with the single spatial
variable r = |x| > 0, where the equation takes the form

¥ lw™),), in Ry x Ry,

Ur =
rN-—-l

with the symmetry condition at the origin

@™)(0,t) =0 for t > 0.
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Therefore, a way of performing the asymptotic analysis is to establish sharp asymp-
totic properties of general radial solutions, and next use classical symmetrization
arguments for the PME or related equations establishing that as ¢+ — o0, the so-
lutions (possibly properly rescaled) become radially symmetric. This needs another
kind of application of the maximum principle, the method of moving planes, which
is a classical subject of the parabolic theory to be discussed below.

First example of intersection comparison for the PME. When dealing later on
with PME-like equations, various (sometimes, rather involved) forms of intersection
comparison with the ZKB-solutions will play an important part. Here we present a
first simple application of intersection comparison establishing a sharp bound on the
propagation of the interfaces of the weak solution u(x,¢) of the Cauchy problem
(2.91). Let s, (¢) denote the right-hand interface of the solution,

su(t) = sup supp (u(-,2)), t=0.

ByM = f uo dx we denote the mass of initial data and hence of u(-, ¢) forany ¢t > 0
by the mass conservation.

Proposition 2.19 There exists a constant sy such that for any t > 0,
s(t) < 5o+ su(l+1) = s + ey MTD/TD (1 4 1/ (mF D) (2.95)

where ¢, > 0 is a constant and sy (t) is the right-hand interface of the explicit
solution (2.23) with the same mass M.

Proof. We fix the ZKB-solution U (x — sg, 1 + ¢, C), where C is chosen from (2.40)
so that

/u(x, Ndx = le(x —50,1+1¢,C)dx, (2.96)

and sg is large enough to guarantee that the initial supports are disjoint:
supp (uo) Nsupp U(x — 50, 1,C)) =0 = 10, U) =1. (2.97)

The shifting in time # + 1 in U is performed for convenience to avoid comparison
with the initial Dirac mass for I/ (though this can be done by approximation, i.e.,
taking the time variable ¢ + ¢ and setting ¢ — 0T). It follows from the intersection
assumption in (2.97) that by the Sturm theorem

I, U)<1 forall t >0 (either=1or=0). (2.98)

Taking into account that all the interfaces are monotone in time (either increasing or
decreasing), one can see that this immediately implies the comparison of the right-
hand interfaces,

su(®) <so+sy(l+1), t>0. (2.99)
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Indeed, in this simple geometric configuration, where by (2.96) both solutions have
the same mass (the L!-norm), one can see by drawing the spatial profiles of the
solution that (2.99) cannot be violated for any # > O since this would mean the
violation of the Sturmian property (2.98).

Actually, we have proved that in this case the number of intersections (known to
be nonincreasing) is also nondecreasing, i.e., there holds

I(t,U) does not decrease (hence = 1).

The first half of this property is Sturm’s theorem while the second half has nothing
to do with Sturmian argument and, by geometry, is associated with the common
property (2.96) of the solutions chosen. m|

Choosing so <« —1, the same intersection comparison implies a similar lower
estimate on the interface

Su@) = so+sul+1), t>0,
which together with (2.95) give the precise asymptotic convergence of the interfaces:
t—l/(m-i—])su(t) — cmM(m~1)/(m+1) as t — 00.

Similar interface estimates can be proved by another version of the strong max-
imum principle, the Shifting Comparison Principle, we are going to describe next.
Note that both principles, with some common features, have different areas of appli-
cations.

2.5.2 Shifting comparison principle (SCP)

This is a comparison result for one-dimensional equations that is, in essence, a form
of the maximum principle for the equation after integration in x. It was presented
in [300] and used in many later applications. Briefly stated, it says that for certain
equations the following holds:

Shifting Comparison Principle. Whenever comparison of the integrals of two initial
functions holds, i.e.,

X X
/ up1(s)ds > f uga(s)ds forany x € R,
-0 -0
then the same comparison holds for the corresponding solutions at all times,
X X
f ui(s,t)ds > / uy(s,t)ds forany x e R, t > 0.
-0 —00

Theorem 2.20 The SCP holds for the nonnegative, weak and integrable solutions of
the Cauchy problem for the filtration equation u; = ®(u)x,, where ® is a monotone
nondecreasing function, or more generally, a maximal monotone graph.
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The proof was done in [300] in the case of the PME, ® (1) = u™, m > 1. It can
be generalized rather easily to the p-Laplacian equation for N = 1, u; = A, (u) with
p > 1, or even the more general equation with gradient dependence, u; = (P (ux))x.

The practical form of viewing the principle is this: shifting to the right a certain
mass distribution, represented by a function ug; > 0, produces a distribution %3
where the above situation holds. Then, the same relation is preserved for all times.

Comparison of interfaces. This is one practical application that we will encounter
in cases of finite propagation. Suppose we have two solutions with the same total
mass

/ul(x,t)dx=/ uy(x,t)dx =M > 0,
R R

and let us assume that this quantity is conserved in time, as in the PME or PLE. Let
us define the right-hand interface by the formula

si(®t) = max{x : u;(x,t) >0} fort>0,i=1,2.

Since this curve can also be described as

X

5;i(t) = inf {x : f u(s,t)ds = M},

-0

it is easily seen that a shifting comparison implies comparison of the interfaces

51(t) < s2(2).

A similar argument by shifting can be applied to the left-hand interfaces with similar
results.

Application to the PME. The SCP can be used in combination with the ZKB solu-
tions to produce a very quick proof of the behaviour of the interfaces of the solutions
of the PME.

Proposition 2.21 Let u be a weak solution of the PME, (2.91) with nonnegative
initial dataug € L1 (R) such that ug(x) = 0 outside the bounded interval I = (a, b).
Let M be the mass of the solution and let s (t) and s_(t) be the right-hand and left-
hand interface respectively. Then |s+(¢)| = O (tV/m+D)Y fort > 1. More precisely,
we have '

(2.100)

s+ (t) = cm M m=1)/m+1);1/(m+1) + 0(1),
s_(t) = —cm Mm=D/m+1)1/m+1) 4 0(1),

ast — o0, where ¢y, is a positive constant that can be calculated explicitly from the
formula of the ZKB solution.

The proof consists in shifting first all the mass to the left and concentrating it at
the point x = a in the form of a Dirac mass. The corresponding solution u is the
ZKB solution centered at x = a with mass M, and its interfaces are exact
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s1,+() = cm Mm=D/m+D 1/ m+1) 4
S1.—(t) = —cp MDD 1/m+1) o g
The SCP says that they lie to the left of 54 (z), s—(¢) (i.e., the values lie below). The
same argument applies to the concentration as a Dirac delta to the right, at x = b and
we obtain
54 (t) < 52.4.(t) = cpy MOD/+D 1/ (mtD) 4 gy
S_(t) < 59 _(t) = —cpyp MO=D/ (D) 1/Gm+1) 4 p

This proves the result. Let us remark that a further (and delicate) argument is used in
the paper [307] to conclude the finer result

S+(t) =Cm M(m—-l)/(m+l)tl/(m+l) +b+0(1),
S—(t) = —Cpy MM~ D/nHD/ D) 455 4 o(D).

With this the convergence of the solution towards the ZKB profile easily follows in
one space dimension.

2.5.3 Other comparisons

Symmetrization. The way to apply the two preceding comparison arguments in the
general context of several space dimensions has not been found. A partial answer is
the concept of spherical rearrangement of functions and symmetrization, which has a
large mathematics literature. Let us take a simple case: given a function f € L1(RY),
f = 0, we define its radially symmetric rearrangement as the radially symmetric
function fi(r), r = |x|, that has level sets of the same measure, i.e.,

meas{x : f(x) > k} = meas{x : fi(|x]) > k}.

With the condition of right- or left-continuity, this defines fi in a unique way.

We then define the relation of mass concentration for radially symmetric solu-
tions as follows:
Definition. f is less concentrated than g, in symbols f < g, iff for everyr > 0,

fx)dx < / g(x)dx. (2.101)

B (0) B,(0)

The following result is proved in [298].

Theorem 2.22 Let ui, i = 1,2, be a pair of radially symmetric solutions of the
problem for the PME with initial data ug; in the class of nonnegative and integrable
data. Assume that ug; < ugy. Then, for everyt > 0,

uy(, 1) <uz(-, 1). (2.102)
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But we can also compare a general function f with a radially symmetric function
g.Then, f < g iff foreveryr > 0,

/f(x)dxsf gx)dx (2.103)
Q B, (0)

for every set Q with the same or less measure than the ball B,(0). In that case the
result stays valid.
As an immediate consequence of this result we obtain comparison of supports.

Proposition 2.23 Let u; and uy be two solutions as before and let us assume that
they are compactly supported and have the same mass. If Ry(t) and Rz (t) are the
radii of their respective supports, we have

Ri(t) < R2(2) forevery t > 0. (2.104)

We only need to observe that if the common mass is M, then

R,-(t)=sup{r>0:/ u;(x,t)dx < M}.
Br(0)

Moving plane method. Let us mention another comparison principle to be used
in our future analysis. It is Aleksandrov’s Reflection Principle or method of moving
planes [1], [2]. It plays a fundamental role in the theory of nonlinear parabolic and
elliptic equations.

Let us show a simple and quite useful application in the form of a monotonicity
lemma:

Proposition 2.24 Let u > 0 be a solution of the Cauchy problem for the heat equa-
tion, the PME or the PLE with initial data supported in the ball BR(0), R > 0.
Then for every xo € R¥ such that |xp| > R and everyt > 0, u(x,t) is monotone
nonincreasing along the ray l(xg) = {x = s xo : s > 1} in the sense that

u(saxg, t) < u(sixo,t) if sp>s1>1. (2.105)

Proof. The application of Aleksandrov’s reflection principle proceeds as follows:
we draw the hyperplane H which is mediatrix between the points x = s2xp and
y = s1xp in the above situation. It is easy to see that H divides the space R¥ into
two half-spaces, one €21, which contains y and the support of ug, and another one,
€29, which containg\ x and where ug = 0. We consider now the initial and boundary-
value problem in Q = ©; x (0, 00). Two particular solutions of this problem are
compared: one of them is u1, the restriction of u to @ , another one is

uz(z,t) = u(mw(z),t), z e,

where  is the specular symmetry with respect to the hyperplane H. This is where
the equation appears for the first time: it has to be invariant under this symmetry.
Thus, if we orient the coordinate axes so that H = {x; = 0}, then
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(X1, oeey Xp) = (—X1y eory Xp).

Clearly, u; and uj are solutions of the same equation in a Besides, u; = u3 on
the lateral boundary, ¥ = H x (0, 00). Finally, u; > us for ¢t = 0 since u = 0 in
2. Since our equations satisfy the maximum principle, by comparison for the mixed
problem we have

ui(z,t) > uz(z,t) for z € Qq, t > 0.

Putting z = y we have 7 (z) = x so that u(y, t) > u(x, t) as desired. O

Actually, the result can be sharpened into monotonicity along the cone of direc-
tions with vertex xg, with axis along the direction of xo and with a certain amplitude
(angle) that allows for the previous argument with hyperplanes to be applied.

Let us show another typical application to the large time distribution of the level
sets of solutions of the PME in the form of a monotonicity lemma as is used in [71].

Proposition 2.25 Let u > 0 be a solution of the Cauchy problem for the PME with
initial data supported in the ball Bgr(0), R > 0. Then for every x such that |x| > 2R
andeveryr < |x| —2R,r > 0, we have

u(x,t) < Ii?f u(y,t). (2.106)
yl=r

Proof. We use Aleksandrov’s reflection principle as before. Now we draw the hyper-
plane H which is mediatrix between the points x and y in the above situation. It is
easy to see that H divides the space R" into two half-spaces; we define them to be
€21 and €2, as before, perform the specular transformation 7, apply comparison, and
finally conclude that u(y, t) > u(x, t) as desired. O

It follows from here that the lower level lines tend to be almost spherical. In
particular, this applies to the free boundary, cf. [210]. The argument applies without
changes to the heat equation, the p-Laplacian equation and other parabolic equations
as long as they respect specular symmetry and the maximum principle.

Remarks and comments on the literature

§ 2.1. There are many texts that develop the general aspects of reaction-diffusion
equations, like Smoller’s [293]. General existence, uniqueness, comparison and reg-
ularity results for quasilinear degenerate parabolic equations with arbitrary diffusion
nonlinearities or other singular coefficients can be found in Kalashnikov’s survey
[202], see also Di Benedetto’s book [96] and general regularity results in [94], [95].
The theory of the filtration equation was mainly developed by Bénilan, Crandall and
coworkers. Unfortunately, their text on the subject is still unpublished; cf. [41]. Main
impetus for the regularity comes from the work of Caffarelli and coworkers [68, 66].

§ 2.2. The mathematical study of the PME can be said to begin with the investi-
gation on the existence of the source-type solutions, cf. the original papers [325],
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[25], [261], which introduce the need for generalized solutions. The first study of
existence and uniqueness is the famous paper by O.A. Oleinik, A.S. Kalashnikov
and Czhou Yui-Lin’ [257] for the PME and filtration equations with general non-
linearities. Since the early 1970s there has been a continuous stream of new results,
starting with the works of Aronson on regularity and the interface (free boundary)
[14], Bénilan and coworkers on general well-posedness and semigroups [34], and
Kamin on asymptotic behaviour [203]. The shift in the functional setting from L2
spaces towards L! and measures is a favorite theme in Brezis’s work, [53, 55]. The
study of the regularity of solutions and free boundaries was largely developed by
Aronson, Caffarelli, Friedman and coworkers. Existence under optimal conditions is
due to the combined efforts of Aronson, Caffarelli, Bénilan, Crandall, Pierre, Dalh-
berg and Kenig, among others. General presentations of the results can be found in
the survey papers [15] and [264] and the text [304]. A theory of viscosity solutions
for the PME is developed in [70].

Maximum principles, super- and subsolutions are well known in the classical
parabolic and elliptic theory, see the books [118], [272], [293], and admit formula-
tions in all sorts of generalized solutions which have a great role in the theory. For
nonlinear comparison with weak super- and subsolutions cf. [202].

The free boundary problems have been extensively researched in recent times. In
particular, the Stefan problem is maybe the most important free boundary problem
of evolution type [283, 249]. The combustion free boundary problem for the heat
equation admits a free boundary on which we impose two conditions

u=0, |Vul=c,

where ¢ > 0 is a constant or a given function, cf. the survey paper [306]. It is also
called the Florin problem, [114].

§ 2.3. A main reference for the techniques of scaling and similarity applied to porous
media and other nonlinear equations are Barenblatt’s books, [26, 27]. The subsec-
tion on the Cauchy problem is taken from [307], where the literature is discussed.
The main theorem of convergence for m > 1 is essentially due to Friedman and
Kamin [123], but the whole proof is in [307], which also contains the convergence
in relative error for m < 1. The result for the Dirichlet problem is due to Aronson
and Peletier [19], and the outline of proof is taken from [308]. The reader will find
a survey of results for the Cauchy—-Neumann problem in [3], for the exterior Dirich-
let problem in [275]. Refined asymptotic expansion for the PME is quite involved,
see an application of perturbation theory of linear operators in [7] (cf. earlier formal
analysis in [5, 323]). Strong asymptotic properties of geometrical type (asymptotic
concavity) have been recently obtained, cf. [237]; they apply in all dimensions and
can be generalized to the p-Laplacian equation [238].

§ 2.4. For Lyapunov’s original work we refer to [244]. Concerning parabolic equa-
tions, we mention results by T.I. Zelenyak [327] who showed that a standard (inte-
gral) Lyapunov function can be constructed for any quasilinear uniformly parabolic
equation u; = a(x,u,uy)uxx + b(x,u,uy) on a bounded interval with general
nonlinear boundary conditions (including a delicate result on the w-limit sets of
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any bounded orbit). Further general extensions are due to H. Matano [247], who
showed that Sturm’s theorem on zeros generates a discrete Lyapunov function (the
number of intersections with any stationary solution; Matano used the term *lap-
number” [248]). This geometric Lyapunov approach applies to general fully nonlin-
ear parabolic equations u; = F(x, u, Uy, uxyx).

The first Lyapunov approach is rather folklore after the work of Bénilan on con-
traction semigroups [34]; it has been developed in detail in [307]. Newman’s Lya-
punov approach was proposed in [252] and developed in [276]. It is base of current
work on so-called entropy methods for which we refer to [73]-[75], where other
references can be found. This method allows us to obtain rates of convergence that
improve the result of Theorem 2.3.

§ 2.5. The first Sturm theorem was formulated as a consequence of (ii) in the section;
it is a form of the strong maximum principle for parabolic equations. As a by-product
of the first theorem, Sturm presented an evolution proof of bounds of the number of
zeros of eigenfunction expansions: for finite Fourier series

fx) = Z (ar coskx + by sinkx), x € [0, 2m], (2.107)
L<k<M

by using the PDE (2.88) with ¢ = 0 (plus periodic boundary conditions), it was
proved that f(x) has at least 2L and at most 2M zeros. (Sturm also presented an
ODE proof of the same result to be compared with Liouville’s proof who also was
interested in this ODE subject.) This lower bound is often referred as to the Hurwitz
Theorem, which was wider known than the first Sturm PDE theorem. This Sturm—
Hurwitz theorem is the origin of many striking results, ideas and conjectures in topol-
ogy of curves and symplectic geometry. We recommend the book by W.T. Reid [277],
entirely devoted to generalizations and applications of Sturm’s ideas and theorems to
the ODE theory, as well as V.I. Arnol’d’s surveys [12], [11] on related questions of
symplectic geometry. These references contain detailed descriptions of the results,
historical comments and extensive lists of earlier references.

Unlike the classical Sturm theorems on zeros of ODEs, Sturm’s evolution zero set
analysis for parabolic PDEs did not attract much attention in the nineteenth century
and, in fact, it was practically forgotten for almost a century. It seems that G. Pélya
(1933) [270] was the first to revive the interest in the twentieth century for the first
Sturm theorem applied to the heat equation (the number of “Nullstellen” of u(x, ¢),
the number of x € [0, 2x] such that u(x, ) = 0, was studied via Sturm’s approach;
radial and cylindrical solutions were considered and zero properties of convolution
integrals were also described).

The earlier extension by A. Hurwitz (1903) [198] of Sturm’s result on zeros of
(2.107) to infinite Fourier series (2.107) with M = oo did not use PDEs. Since the
1930s, versions of the Sturmian argument were rediscovered on several occasions.
For instance, a key idea of the Lyapunov monotonicity analysis in the famous KPP-
problem by A.N. Kolmogorov, I.G. Petrovskii and N.S. Piskunov (1937) [223] on
the stability of travelling waves in reaction-diffusion equations was based on the first
Sturm theorem in a simple geometric configuration. We have mentioned Nickel’s
[253] and Sattinger’s paper [287] in the 1960s.
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From the 1980s the Sturmian argument for PDEs began to penetrate more and
more into the theory of linear and nonlinear parabolic equations, and found several
fundamental applications. These are asymptotic stability theory for various nonlinear
parabolic equations, orbital connections and transversality of stable-unstable mani-
folds for semilinear parabolic equations as Morse—Smale systems (we refer to the pi-
oneer D. Henry’s paper [192] and [6]), unique continuation theory, Floquet bundles
and a Poincaré—Bendixson theorem for parabolic equations, problems of symplectic
geometry and curve shortening flows, etc. An extended list of references from differ-
ent areas can be found in Section 4 of [138] and in the books [141] and [286], Chapter
4. In subsequent chapters, intersections comparison via Sturm’s theorem will be used
in proving important estimates on solutions of nonlinear parabolic equations, where
we refer again to the results which are most important for our applications.

The construction of solutions by approximation is a main issue in nonlinear stud-
ies involving limited regularity. Maybe the most classical area of such a construc-
tion in the twentieth century happens in the theory of shock waves or the theory of
conservation laws (vanishing viscosity method), where we mention pioneer work of
O.A. Oleinik and S.N. Kruzhkov [256], [227] in constructing entropy solutions in the
1950-60s, the general theory of viscosity solutions of Hamilton—Jacobi equations in
1970s and 80s by P.L. Lions, M.G. Crandall and coworkers [83]-[86], and various
other impressive generalizations and extensions to wide classes of nonlinear PDEs.

The shifting comparison principle was introduced in [300] for the study of the
PME. Similar results for more general quasilinear heat equations can be proved by in-
tersection comparison; see [128] and [286], p. 245. A careful checking shows that the
arguments by shifting comparison and intersection comparison are not completely
equivalent even for the PME.

A general reference to symmetrization, also called Schwarz symmetrization, is
[190]. The application to obtaining suitable a priori estimates for elliptic problems
is described by Weinberger in [320], 1962. The technique has been described in
detail by Bandle in [24], 1980, which covers a wide number of elliptic and also
parabolic problems. See also [296, 217, 250]. The introduction of the relation of mass
concentration for one-dimensional or radial solutions seems to be due to Hardy. The
general definition is used in [298] and then extended to the p-Laplacian in [299].
These concepts have been used and extended by a number of authors like Diaz [92].
A review of our work will appear in [309].

Pioneering applications of Aleksandrov’s reflection principle are due to Serrin
[290]. It plays a big role in the theory of nonlinear parabolic and elliptic equations,
see Chapt. 9 in [183]. A famous application of symmetrization phenomena for non-
linear elliptic and parabolic problems is described by Gidas, Ni and Nirenberg in
[182]. Another symmetrization argument, based on Aleksandrov’s reflection princi-
ple, is given in Section 5 of [210].
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Equation of Superslow Diffusion

In this chapter we present a first application of the abstract stability theory
developed in Chapter 1. We start with a simple model, involving a single
nonlinear operator, namely, a nonlinear version of the heat equation, of the form
ur = A®(u), where ®(u) is an increasing real-valued function.

The asymptotic behaviour of the solutions of the heat equation is well known in
various settings and under different boundary conditions. We have recalled this fact
in the previous chapter along with the results for the power case ® (1) = u™ with
m > 1 (the PME), where the asymptotic self-similar behaviour was established by
scaling and Lyapunov techniques, i.e., standard techniques as we call them.

We consider here the case of the exponential nonlinearity

dw)=eEM  us>o0, (3.1)

which is known to play an important role in heat conductivity, combustion and in
general thermodynamics as the famous Arrhenius law occurring in many of the co-
efficients describing thermodynamical properties of nonlinear media. E > 0O is a
constant (an energy) that we will normalize to 1 in the sequel. The asymptotic be-
haviour of this equation produces a case of asymptotically small perturbations that
fits perfectly the theory developed in the first chapter. We study two settings: the
boundary value problem in a bounded space domain, and the Cauchy problem in the
whole line, x € R.

3.1 Asymptotics in a bounded domain

Main result. Let 2 be a bounded domain with smooth boundary 9. We study the
asymptotic behaviour of the solution to the initial and boundary-value problem

up=APw) in Q=0 x(0,00) with ®u)=e 1/, (3.2)

u(x,0) =uog(x) for x € Q, (3.3)
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u(x,t) =0 on 92 x [0, c0), (34
where the initial function ug # O satisfies

up € L*(RQ), up>0 in Q. (3.5)

Equation (3.2) is an example of an equation of superslow diffusion, so called be-
cause the heat-conduction coefficient ®'(u) = u=2e=1u ig very small as u — O,
more precisely ®'(u) grows more slowly than any power of u for u ~ 0. Exis-
tence and uniqueness of a nonnegative weak solution and comparison theorems for
(3.2)—(3.5) with quite general monotone increasing functions ¢ are well known, see
comments at the end.

In-order to present our asymptotic result in the dynamical systems framework we
have developed in Chapter 1, we need some preliminary transformations. Consider a
solution u = u(x, t) of (3.2)—(3.5). First, we introduce the natural variable

v(x, 1) = e H/HED (3.6)
Therefore, 0 < v(x, t) < 1. It satisfies the quasilinear equation
v =v(nv)?Av in Q (3.7)

(which does not look better on first inspection), zero boundary conditions and the
initial conditions corresponding to applying (3.6) to ug. Let Fo(x) = F(x; §2) be the
unique classical, positive solution in €2 of the linear inhomogeneous elliptic problem

AF=-1 in Q2, F=0 on 9. (3.8)
This is our main result.

Theorem 3.1 With the above assumptions, uniformly in x € ,
lim ¢ (nt)? v(x,t) = Fao(x). (3.9)

The result departs from the asymptotic behaviour of the solutions to the mixed
problem (3.2)—(3.4) for simpler &’s like the heat equation ($ = u) and the PME
with @ = u™, cf. Section 2.3. Before proceeding with the proof, we are going to
elaborate a bit on the meaning of the result.

APPROXIMATE SEPARATION OF VARIABLES FOR v. Theorem 3.1 shows that the
equation of superslow diffusion (3.2) has the property of separated-variables asymp-
totics in terms of the natural variable v, although there exist no nontrivial solutions
of problem (3.2)—(3.4) of the separated-variables form. In fact, the function

Vix,t)=@¢In’ )" F(x; Q), (3.10)

which represents the common asymptotic behaviour of the solutions to our problem,
is only an approximate self-similar solution to (3.7), increasingly accurate as ¢ grows
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to infinity. Indeed, if we assume that for large ¢, there is an approximate separation
of variables, v ~ h(t) F(x), with 4(t) — 0 ast — 00, a heuristic computation gives
forallr > 1,

B (t)F ~ h%(t) In® h(t) FAF,

hence h(t) ~ (¢ In?¢)~!. Function V(x,¢) in (3.10), which describes the asymp-
totic behaviour of our class of solutions to equation (3.7) in the bounded domain €2,
satisfies the nonautonomous quasilinear parabolic equation

v = (In%t +2Int) v Av, (3.11)
which upon the change of variables ds/dt = (In#)> + 21n¢ becomes
vy =V Av. (3.12)

Though equations (3.7) and (3.12) look quite different, our result amounts to saying
that the separated-variables solution of (3.12), V(s,t) = sV Fq (x), explains the
asymptotic behaviour of a wide class of solutions of equation (3.2).

THE MESA PATTERN FOR u. We are able to observe the phenomenon of variable
separation by working with the function v. If we translate our result (3.9) to the
variable u thanks to

u(x,t) = —1/lnv(x,1t), (3.13)
we obtain

lim (Int) u(x,t) =1 (3.14)
t—>00

locally uniformly in €2, whence a flat profile. Notice that the information about the
spatial structure (the spatial pattern) is lost and in these variables we only see a mesa-
like profile. The limit cannot be uniform in €2 because of the boundary condition
u = 0. Finally, the function U(x,?) = —1/InV(x,?), which is an approximate
self-similar solution to (3.2), is an exact solution of the equation

u = (In®t +21Ine) u?Ae 1", (3.15)

and the same comments made above for v apply now to (3.2) and (3.15).

Rescaled equation. The proof of the theorem is based on the study of the rescaled
variable 6 naturally corresponding to our asymptotic behaviour, which is defined as

0(x,7) = (T + 1) In*(T + 1) v(x, t), (3.16)

where T = In(T +¢) and T > 1 is a large fixed constant. Using this trick is not a
matter of chance. On the contrary, such a rescaling is a quite useful tool in similar
problems that we will see often in the sequel. We would like to draw the attention
of the reader to the proper choice of the time factor, which is crucial and not always
easy to predict.
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We shall consider the initial- and boundary-value problem for 6 (x, ) consisting
of the equation

41 2
0. =B, 1) = A6) + :TQAB—I——T—(G——GInGAB)
41n® 4 1

a0~ 220100 A0 + =0 (IN0)2 A6, (3.17)
T T T

in Q x (19,00), 79 = In T > 0, with initial data
0(x,70) = Op(x) =T I’ T e~ /%™ in Q, (3.18)
and Dirichlet boundary condition
8(x,7) =0 on 92 x [19, 00). (3.19)
The autonomous part of equation (3.17) has the form
AB)=0A0+6. (3.20)

In Theorem 3.1 we prove the convergence of 6(x,t) as T — 00 to the unique
solution F(x; €2) of the stationary problem

A(F)=0 inQ, F>0 inQ, F=0 ondQ, (3.21)

which is equivalent to (3.8).

Exact upper and lower estimates. Here we prove upper and lower estimates for
v(x, t) with exact decay rates. They are based on the construction of suitable super-
and subsolutions. We begin in the first lemma with the supersolution. Given R > 0,
we denote by Fr(x) the function

R? — |x|? .
Fr(x) = —-—-—-é—ﬁ—— >0 in Br ={|x| < R}, (3.22)

which solves (3.8) in 2 = Bg. We have

Lemma 3.2 Let R > 0 be such that Bg O Q = closure(2) and let ¢ > 1. There
exists 1) > 1 such that the function

O(x, 1) =c Fr(x) (3.23)
is a classical strictly positive supersolution of (3.17) in Q x (1, 00).

Proof. Choosing R such that @ C Bg, we have 8 > 0in & x (11, ©0), and hence
the proof consists in checking that this function satisfies the corresponding parabolic
differential inequality

B@,7)<0=0 in Q x (11,00). (3.24)
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Since AFg = —1in 2, one can calculate that for T > 77 > 1,

4Int

_ 2
B(@, 1) ::cFR{l—c—— ¢+ =[1+cln(cFp)]

41n’t 4Int
— c+ 5—¢C
T

1
- In(cFg) — —2c1n2(cFR)] .
T T

Hence, we get

— 2
B@, 7)< cFr{1—c+ = [1+c|In(el Frlloa)l]

4Int
+ el Frlleo)l | (3:25)

It is easy to see that if T} = 71(c, R) is large enough, the right-hand side of (3.25) is
negative for 7 > 77 and hence (3.24) is valid. O

In order to construct a suitable subsolution, for arbitrary small fixed A > O,
we consider the function f(x) determined as follows: f is nonnegative, radially
symmetric and satisfies in its positivity set the degenerate elliptic equation

fn f*Af+f=0 (3.26)
with || flloo = A. Therefore, if r = |x|, f = f(r; A) will satisfy

er_l VLY 4+ (nf)"2=0 in RyN{f >0}, (3.27)

fO =4, f©O)=0 (3.28)

(f" = df/dr). One can see that there exists a unique classical solution of (3.27),
(3.28), which is positive and smooth in some interval [0, rp), and it vanishes at the
endpoint r = ro(A) > 0. We have the estimate

Y
ro(A) < \/ 2N / (Inz)2dz. (3.29)
0

Notice that f'(rp) < 0. It will be convenient to extend f tor > rg by 0. Finally, note
that by (3.28) and (3.29)

| flloo = 0, diam(supp(f)) > 0 as A — 0. (3.30)

Lemma 3.3 Fix an arbitrary xo € 2 and a large vo > 1. Then there exists Ay €
(0, 1) such that for any A € (0, Ag] the function

O(x,7) = f(lx —xo0l; 1) (3.31)

is a weak subsolution of (3.17) in Q x (13, 00) if {x : |x — xo| < ro(AM)} C Q.
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Proof. Firstly, we note that by (3.30) supp(f) C 2 for small 0 < A < 1. Secondly,
we shall now check that

B(f,7) >0 in {|Jx —xg| <rg(A)} x (13, 00). (3.32)

Since fAf = —f/(In £)? in supp(f), one can calculate that

B(fm)= fl1- L 4t 20 . 1 41n’7 LI
T Inf th®f = In f 2mn?f t?Inf 12

and hence, using the condition || f|lcc = A, we get the estimate in S = supp(f) X
(72, 00),

1 4In1y 2 41n%1, 41Int 1
B ,T) > 1-— - — —_ — >
S f[ A mln®A  wllnd|  Z2In?x  tf|lnA| 7}

if 75 is large enough and A € (0, 1) is sufficiently small. It is now clear that 8(x, 7)
satisfies the inequality 8; < B(0, t) in the sense of distributions in 2 x (12, 00). Ob-

serve that 8 (x, 7) is stationary, while actual solutions of the equation have expanding
supports. m]

We are now ready to obtain lower and upper bounds for the solution 6 (x, ) of
(3.17)—(3.19) for large 7. We begin with an upper estimate.

Lemma 3.4 There exist C > 0 and R > 0O such that for 73 > 1,
0(x,7) <C Fr(x) in Q x (13,00). (3.33)

Proof. Fix some large constants ¢ > 1, R > 0 and 7; > 79 as in Lemma 3.2
such that (3.23) is a classical positive supersolution of (3.17) in 2 x (11, 00). Since
lu(-, t)[loo — O as ¢ — 00, an obvious result for such parabolic equations in diver-
gent form, we can find a large T, > T} = e™! such that

cFr(x) > Ti(InT1)% exp{—1/u(x, Tx)} (3.34)
in §2. We now introduce another rescaled variable
O(x,%) = (T1 +t — Ty) In®(T1 + ¢t — Ty) v(x, 1), (3.35)

with the new time variable T = In(7; + ¢ — T). Remark that ¢t = T corresponds to
# = 11. One can see that §(x, 7) satisfies the same equation (3.17) with t replaced
by 7 and hence by Lemma 3.2, under the above assumptions, function (3.23) is a
classical supersolution for ¥ > ;. Since (3.34) means that  (x, 7;) < cFg (x) in €2,
and 6 (x,7T) = 0 < Fr(x) on the lateral boundary x € 92, T > 71, we conclude by
the maximum principle that

6(x, %) <cFr(x) in Q x (11, 00). (3.36)
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But from (3.16) and (3.35) we have 8 (x, T) = 8(x, t)(1+0(1)) as T — oo uniformly
in 2. Hence there exists some constant C > ¢ such that upper estimate (3.33) holds
in Q x (13, 00) if 3 is large enough. O

We now establish a lower estimate.

Lemma 3.5 There exists a function fi(x) > 0in Q, fi = 0 on 3S2, such that for
any large 14,

0(x,t) > fulx) in 2 x (14, 00). (3.37)

Proof. By well-known properties of weak solutions to (3.2), the support expands
without bounds, so that there exists 7, > 1 such that u(x,?) > 0in Q forz > T5.
Let 74 = max{m, In(T + T3)}, where 17 is given in Lemma 3.3. Given xp € 2
we consider those parameters A € (0, Ag) such that the support of f(|x — xpl; A) is
contained in €2, and moreover we have

O(x,14) = f(lx —xp|; A) in Q. (3.38)

This means that we have to choose A € (0, A1(xp)). Thanks to Lemma 3.3, we can
conclude that the same inequality will hold for T > 74. Hence, if we define

Ju(x) = sup{f(x —x0; A) : x0 € 2, A € (0, A1(x0)), } (3.39)
then estimate (3.37) holds. O
The lower estimate (3.37) means that ||[6(-, T)[lcc = Cx = || fxlleo for large 7,

where the constant C, > 0 may depend on the initial function. It is equivalent to the
following lower estimate of the solution v(x, ¢) of (3.7):

1vC, Dlloo = CxIn? )11 +0(1) as t — o0, (3.40)

which for u(x, t) satisfying (3.2) reads: as t — 00,

I, Dlloo = [In(C L N2 )17 + 0(1)) = (ne) ™1 (1 + o(1)). (3.41)

Proof of Theorem 3.1. We want to prove that 8 (x, T) converges towards F (x; 2) as
7 — 0o uniformly in x € Q. We shall use the S-Theorem from Chapter 1, and view
equation (3.17) for 6, as a perturbation of the evolution equation

6 =A@) =60 A6+0. (3.42)
As a functional space, where the orbit lies, we take, in view of (3.33) and (3.37),
X={geL®Q): fi() <g()<CFr() ae. in Q}, (3.43)

which forces us to consider only large enough times, to be precise T > 1, =
max;{t;}, where 7;,i = 1, ..., 4 are as in the above four lemmas. We want to apply
the S-Theorem, which says that any orbit of the perturbed, possibly nonautonomous
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equation (in this case (3.17)) converges towards the w-limit set of the asymptotic
equation (here (3.42)) if the three hypotheses (H1)—(H3) are satisfied.

Let Q, be the w-limit set of equation (3.42) in X. It is well known that A
generates a continuous semigroup in the class of bounded strictly positive initial
data. One can see that under the condition 8(-,7) € X for T > 7, (and hence
0(x,t) > fi(x) > 0in Q for all T > 1t,) the w-limit set of any solution
u € C([0, 00) : X) of (3.42) consists of the unique stationary solution of the equation
in X which is positive in §2, namely

Qy = {Fq()}. (3.44)
Indeed, equation (3.42) admits the Lyapunov function
¢0(7)) = %ane(r)u% = 18(0)l1 » (3.45)

which is nonincreasing for T > 7, so that we have for any s > 0,

' T+s 2
SOt +5)) — PO(1)) < —[ ©: @) 4 <o.
r Jao 0()

This corresponds to the formal calculation

d 6:(0)?
oo = [ 2 <
By standard asymptotic results this implies (3.44), the global asymptotic stability of
the unique positive stationary solution.

Thus, in order to prove that the w-limit of the solution (-, 7) of (3.17) with initial
value at T = 7, in the space X defined by

w(@(-, 10)) = {f() € X : 3 asequence {1;} — oo such that 8(:, 7;) = f()}

is contained in 2, = {Fg} and the orbit {6(-, 7), T > 7.} approaches €2, uniformly
as T — 00, we must check whether the hypotheses (H1)-(H3) are satisfied.

From Lemmas 3.4 and 3.5 we have that all solutions of (3.17) with values
0(-, 7«) € X, stay in X for t > 7,. Moreover, standard regularity theory implies then
that the orbits {0(7)} are relatively compact subsets in the space L%’C((r*, o0) : X).
This is the first hypothesis, (H1), of the S-Theorem.

Hypothesis (H2) translates the fact that (3.17) is an asymptotically small pertur-
bation of (3.42) and consists in showing that solutions of (3.17) converge asymp-
totically to solutions of (3.42) in the following sense: if 6(7) is a solution of (3.17)
and {s;} is a divergent sequence of positive times such that 6(s; + t) converges in
Li’&((r*, 00) : X) to a function ®(7), then @(7) is a solution of (3.42). We remark
that this condition is very weak and is straightforward.

Finally, hypothesis (H3) demands that the w-limit set of equation (3.42) in X be
nonvoid, compact and uniformly stable in the sense of Lyapunov. Since such a set has
one element, F(x; €2), we only need to establish the uniform stability, which comes
from the following result.
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Lemma 3.6 For every ¢ > 0, there exists § = 8(¢) > 0 such that if 6(7) is any
solution of (3.42) which is positive in Q2 and

16(0) — Falleo <4, (3.46)
then
160(t) — Folloo <& forany v > 0. (3.47)
Proof. Fix an arbitrarily small v > 0 and let
QF =QUx eRM\Q: p(x, Q) = yi_%fg Ix — y| < v}, (3.48)
Q, =Q\{x e Q: p(x,9Q) <v}. (3.49)

Obviously, the sets Q;’E are bounded domains in RY with smooth boundaries 3S2§;E ,
Q; CcQcCQf,and

p(HQj,E)Q;) = inf x —y|—=0 as v—> 0.
x€dQT, yedQy

We introduce thé functions F(x; Qﬁ:) defined as in (3.8). For convenience, we extend
the functions F(x; Q) outside of QF by 0. By the standard comparison

Fx;Q <F(x; Q) inQ, Fx;Q)<F(xQ inQ,. (3.50)

Using the monotonicity of the families F(x; Qj) and F(x; 2) in v, it is easy to
show that as v — O,

F(x; QF) — F(x; Q) = 0 uniformly in . (3.51)
Now, given ¢ > 0, we choose v > 0 such that
|F(x; Q) — F(x; Q)| <e. (352)

By the strong maximum principle, there exists § > 0 such that
Fx; QD) > F(x; Q) +68 in Q, Fx;Q=>Fx; Q)+6 in Q. (3.53)
In view of this, if & € X and ||6(0) — F(x; Q2)|lcc < 8, we will have

F(x; Q) <60) < F(x; Q) in Q. (3.54)

We now use the fact that F(x; Q) isa classical solution of (3.42) in Q = 2x (0, 00)
with F(x, Q) > 0 = 6(x, 7) on the lateral boundary, x € 32, T > 0, to conclude
by the maximum principle that

O(x,7) < F(x; Q) inQ.
A similar.comparison performed in 2 C Q between F(x; ;) and 6(x, 7) gives
F(x;2,)<6(x,7) in Q.
Taking into account (3.52), we finally get
F(x;Q—e<6x, 1) <F(x;Q+¢ in Q,

which proves our result. O
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3.2 The Cauchy problem in one dimension

Main results, comparison and discussion. We now investigate the asymptotic be-
haviour of the solution to the Cauchy problem for the equation of superslow diffusion
in one dimension

ur = (") in Q =R x (0, 00), (3.55)
with initial condition
u(x,0) =up(x) in R. (3.56)
We assume that ug satisfies
uo>0, uo#0 inR, ugel®®NL®). (3.57)

Existence and uniqueness of a continuous nonnegative weak solution of (3.55)—
(3.56) is well known; see comments at the end of the chapter. The solution is smooth
at any point of positivity. As in the case of bounded domains, we state our main result
in terms of the function

v=e"/¥, (3.58)
Then, 0 < v(x,?) < 1lin Q, and v(x, t) solves the quasilinear equation
v, =v(nv)’v,, in Q. (3.59)
The asymptotic behaviour of v(x, ¢) is exactly described by the following result.

Theorem 3.7 Under hypotheses (3.57) we have
lim tv(n(n), 1) = Fa(n) = 3@ =)+ (3.60)

uniformly for n € R, where a is one-half of the initial mass:

a=3% f uo(x)dx > 0. (3.61)

If we translate this result (3.60) to the function u(x, ) by means of the inverse
transformation

u(x,t) =—1/Inv(x, 1), (3.62)
we get the asymptotic formula

lim (Int) u(n(nt),t) =1 (3.63)
—>00

uniformly in any set {|n| < ¢}, where ¢ € (0, a) is a constant, while for |n| > a we
have
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tlirgo(lnt) u(n(Int),t) =0. (3.64)

Thus, in terms of the initial variable u(x, t) we observe a mesa-like profile. Notice
that the only parameter which appears in the formulas is the normalized length of
the support of u, namely 2a. This parameter is easily calculated from the law of
conservation of mass f u(x, t)dx = constant, since for large ¢ it follows from (3.63),
(3.64) that f u(x,t)dx ~ 2a and |lupll1 = 2a. Any further information about the
asymptotic spatial structure of the solution as ¢ — o0 is lost in the u variable (in first
approximation).

It is interesting to compare Theorem 3.7 with the asymptotic behaviour of the
solution to the initial-boundary value problem for equation (3.55) in a bounded do-
main studied in the previous section. Let us recall the result obtained there for the
one-dimensional case where the domain 2 is a finite interval (—/, 1), ! > 0, and

u(x,0)=uo(x) in(=,10), u=0 forx==%l;t>0, (3.65)
where ug € L*°, ug >0, ug # 0. Then, uniformly in (-1, [),
. 2 1.2 _ .2
tgrgot(lnt) v(x,t) > Fi(x) = 51— x°). (3.66)
Two differences appear. Firstly, the rate of decay is (¢ In®¢)~! as compared with
¢! in (3.60). Secondly, the particular asymptotic profile is determined by the length
of domain 2/ and not by the initial function (in a bounded domain, the boundary
information is dominant for large times over the initial data).

Going back to the Cauchy problem (3.55), (3.56), we also obtain a precise result
on the asymptotic behaviour of interfaces of every compactly supported solution.

Theorem 3.8 Assume that (3.57) holds and also that ug has a compact support.
Then ast — 00,

s+@)=sup{x e R:u(x,t) >0} =alnt 4+ 0Q),
s—®)=inflx e R: u(x,t) >0} = —a Int + O(1).

Let us make some comments before proceeding with the proofs. In order to un-
derstand the appearance of the asymptotic profile F,(7), it is convenient to view our
result in terms of the rescaled function 6 corresponding to our asymptotic formula

(3.60), which is defined by
O, t) =2+ t)v(n In(2+1),1) (3.67)

(the number 2 plays no special role, any number T > 0 would do). Then 6(n, 7)
solves the Cauchy problem

1 1
6c =B(6, ) = A©) + —[0yn — 20(In0)0yy] + —0(1n6)*6,, (3.68)

in R x (19, 00), with initial condition
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6(n, 10) = 6o(n) = 2exp{—1/uo(nIn2)}. (3.69)
The autonomous part of the operator in the right-hand side of (3.68) has the form
A@B) =00y, +6. (3.70)

It is easily seen that the functions F,(n) given in (3.60) are precisely the radially
symmetric nonnegative weak solutions of the stationary equation A(6) = 0 which
are monotone nonincreasing in |n|. Therefore, Theorem 3.7 amounts to proving the
convergence of the solution 6(n, T) as T — 00 to the corresponding stationary solu-
tion

A(F)=0 inR, F>0, F=F(n), (3.71)

which is uniquely determined by the total mass of the initial function, see (3.61).
Moreover, the function '

V(x,t) =t F,(x/Int), (3.72)

describing by (3.60) the asymptotic behaviour of the solution v(x,t) as t — 00,
satisfies the nonautonomous quasilinear parabolic equation

. Uy, (3.73)
which looks quite different from (3.59). Thus, (3.72) is an approximate self-similar
solution of equation (3.59).

As for equation (3.55), the function U(x,¢) = —1/InV(x, t) (its approximate
self-similar solution) is in fact an explicit self-similar solution of the quasilinear
equation

X

= (] 2.2, —1/u _
U (Int)“u“(e xx ¢ Int

Uy (3.74)

Preliminaries. Explicit solutions. A weak solution to the problem (3.55), (3.56) is
a continuous nonnegative function which is smooth at any point where ¥ > 0 and
has a continuous heat flux —(e~1/#), on interfaces {u = 0}; see comments at the end
of the chapter. We also note that for the solution of nonlinear equations of the type
(3.55), the law of conservation of mass holds, i.e., if the initial mass is finite

/uo(x) dx = Eg > 0, (3.75)
then
fu(x, t)dx = Ey for any ¢ > 0. (3.76)

In view of (3.58), this implies that
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o o0
— f dx/Inv(x,t) = — / dx/Invg(x) = Eg for t > 0. 3.77)
-0 —00

The proof of our result is also based on a careful use of a family of explicit
solutions. It turns out that by a nonlocal Lie-Bédcklund transformation the solutions
of the superslow diffusion equation are transformed into solutions of the quasilinear
heat equation

ur = (k(W)ux)x (3.78)

with the exponential nonlinearity k(u) = e*. It is known [65] that two equations
(3.78) with coefficients k(u) and K(u) = u"2k(u1) are equivalent (a kind of
homology driven by a Lie-Backlund group of nonlocal transformations). Setting
k(u) = e* yields K (u) = u"2e~!/* whence the equation of superslow diffusion.
Unlike equation (3.78) with general nonlinearity k («), the exponential equation with
k(u) = €* admits extra symmetries and exact self-similar solutions. This makes it
possible to translate one of them into the following explicit solution of (3.59) (see
comments):

1
ve(x, 15 ¢) = 5;(c2 —w?)y, (3.79)

where ¢ > 0 is a fixed arbitrary constant and the function w = w(x, ¢; c) € [0, c) is
determined from the algebraic equation

x| = ®(w, ¢) =[2+ In2H)]w + (¢ — w) In(c — w) — (¢ + w) In(c + w). (3.80)
Since the function ®(w, ¢) in the right-hand side satisfies
@' =1In(2r) — In(c?* — w?) >0

for fixed ¢ > 0 and r > ¢?/2, equation (3.80) uniquely determines the function
w(x, t;c) € [0, ¢) in terms of x € [0, x«(¢; ¢)), where

x«(t;c) =clnt +cln (e2/202) =clnt(1+o0(l)) as t — oo. (3.81)

Then (3.79) is an even, continuous and nonnegative function defined for x € R,
t > ¢%/2 and satisfying

Vi(x,2;¢) =0 for |x| > x.(2;¢), vi(x,t;¢) >0 for |x| < x.(t;¢), (3.82)
2 2

sup vk (x,t;¢c) = v(0,¢;¢) = < <1 fort> E—. (3.83)
xeR 2t 2

Going back to the variable u by means of (3.62), we get the explicit compactly sup-
ported solution

ui(x,t;¢c) = —1/Inv,(x,t; c) (3.84)
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of equation (3.55). Indeed, one can calculate from (3.79), (3.80) that

eXp{————-L——}=':‘{ £l8) - ] }(1+0(1))

ux(x,t; ¢) | In(xs () — [x]) |

near the interfaces x = =x4(¢; ¢), and hence exp{—1/uy} € C!, which implies the
continuity of the heat flux on the interfaces. The total mass of the explicit solution is
preserved,

s, 25 W)l 1y =2¢  for t > c2/2. (3.85)
LI(R)

It is curious that at g = c¢?/2 the function u.(x, fg; c¢) behaves near x = 0 like
|x]~2/3, which of course is an integrable singularity, but not a 8-function as for the
ZKB solutions of the PME.

We begin with some simple properties of these explicit solutions.

Lemma 3.9 For any fixed ¢ > 0, uniformly inn € R,

1 1
ve(x,t;¢) = YFC(n) + 0 (;_i;l—;) as t — 0Q. (3.86)

Proof. Using (3.80), we obtain

In(2e?t/(t + 2)) (c — w)In(c — w) — (¢ + w) In(c + w)
met+o T InG + 2)

In| =w+

for w € (0, c). Hence, w(x,t;¢) = |n| 4+ O(1/1Int) ast — oo in {|x]| < x«(¢; ¢)},
which by (3.79) completes the proof. O

Lemma 3.10 For any fixed 0 < ¢1 < c3, there holds
Vi(x, 25 02) > vie(x, t5¢1) in {|x]| < x«(t;c2)}, t > 2c%. (3.87)

Proof. First, we note that

d
—x4(t;¢) >0 for t > 2¢2. (3.88)
dc
Using (3.79), we get
d 1
;Ev*(x, t;c) = ?(c —wuw), (3.89)

and (3.80) yields that w/(x, #; ¢) is well defined in {|x| < x4(¢; c)} for t > ¢?/2.
One can see that
, In(c + w) — In(c — w)
w, = <
In(2¢) — In(c — w) — In(c + w)

1 (3.90)
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for w € (0,c), t > 2c2. This together with (3.89) implies that c — ww/. > O for
w € (0, ¢), and hence by (3.89)

—(—;iv*(x,t; ¢) >0 in {|x] < x:(t;0)}, t> 2> (3.91)
(5
Using (3.88), (3.91), we get (3.87) completing the proof. O

First estimates. Let u(x, ¢) be the solution of the problem (3.55), (3.56). Assume
that ug has a compact support in an interval [—b, b]. We begin with an upper estimate
of this solution.

Lemma 3.11 There exist constants ¢1 > O and t; > c:f' /2 such that
v(x,t) < uve(x,t1+t;c1) in R xR, (3.92)
Proof. By the comparison theorem, we obtain that (3.92) will be valid if
v(x,0) < ve(x,t1;5¢1) in R. (3.93)
Using properties (3.81)—(3.83), we have that (3.93) holds if

1 >ct/2, supui(x,t1;c1) =c3/2 > supv(x,0) = My € (0,1), (3.94)

xeR xeR

xx(t15¢c1) =c1ln (e2t1/2c%) > I} = sup{|x] : x € suppv(x,0)}. (3.95)

Choose t as follows: t; = (c% /4)(1 4+ 1/Mjy). Then (3.94) hold and (3.95) implies

1 e 1+ 2 Y
ciln| — —_— ,
1 3 M 1

which is valid for any ¢; > 0 large enough. O

Our next estimate is a lower bound.

Lemma 3.12 There exist constants ¢c; > 0 and t, > c% /2 such that
v(x, 1) > ve(x,t;c2) in R x (1, 00). (3.96)

Proof. The support of any nontrivial solution expands without bounds as ¢t — o0,
so that there exists #, > 0 such that u(0,#) > 0 and u(x, ;) € C(R). Choose
arbitrarily small ¢; > 0. Then from (3.81)-(3.83) one can see that inequality
v(x, 12) > v«(x, t2; c2) in R holds, and hence by the comparison theorem, estimate
(3.96) is valid. O

If we now perform the change of variables (3.67), then from Lemmas 3.9, 3.11
and 3.12 and properties (3.81)—(3.83) of the explicit solutions, we get the following
weak form of the asymptotic behaviour, which in particular determines the rate of
stabilization to O of u(x, t).
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Lemma 3.13 If ug satisfies (3.57) and has a compact support, then there exist t, >
0 and constants 0 < c— < c4 such that

F(n;ec-) <0(m, 1) S F(n;c4) in R x (74, 00). (3.97)

As a consequence of these estimates, we can also control the growth of the sup-
port of the solution u(x, t) as t — oo.

Corollary 3.14 There exist ty > 0and 0 < C_ < Cy such that for t >, t,

{le <C_In (ezt/zci)} C suppu(-, 1) C [lxl <Ciln (ezt/zci)} . (3.98)

_ [m (CE /:zr)]"l S supu(n 1) < - [1n (c%r /2t)]~1 : (3.99)

A sharp estimate. We establish here a sharp lower bound.
Lemma 3.15 There holds

liminf ¢ sup v(x,?) > Ja?, (3.100)
t—>00

xeR
where a is the half mass given by (3.61).

Proof. Step 1. Assume also that ug has a compact support. By the indefinite expansion
property of the support of the solution to the Cauchy problem (3.55), (3.56), there
exists ¢ = ¢1 such that the support

suppv(x, 1) = (-,1) (3.101)

is a connected interval and 0 € (I, ;). By Aleksandrov’s reflection principle (see
Section 2.5 and comments at the end of the chapter), the solution v(x, ¢) is a mono-
tone function with respect to x in (—o0, —b) U (b, 00) for any fixed ¢t > ¢;.

Step 2. Fix now an arbitrarily small ¢ > 0. We replace v(x, #1) by an approxima-
tion vg(x) such that

(i) Ve(x) <v(x,f1)inRand v.(x) = v(x,#) in (- + ¢&,1+ — &),

() [(ux,t1) — g (x))dx < 2¢,and

(iii) |ZL¥:(x)| > 1 near the endpoints of its support.

Construction. Consider the behaviour close to the right-hand interface, x ~ ;.
It is clear that we can choose /; € (I — ¢/2, 1) such that

Ly
/u(x,tl)dx < %e.
L
To the left of [y we draw the line y(x) = M (l; — x). This line intersects the graph

of v(x, #;) for the first time in a point I < /1. If M > 1 is large enough, we have
Iy > 1y —¢and
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Ly

/u(x,tl)dx < é&.

173

For such an M we define v (x) = v(x, 1) if0 < x <, V. (x) = y(x) ifl, <x <[

and v, (x) = 0if x > [;. The same construction holds for the left-hand side x < 0.
Step 3. Denote by ve(x, t) the weak solution of the Cauchy problem in R x

(t1, oo) for the equation (3.59) with the initial function ve (x, 1) = U¢(x) in R. Let

Ce = %/ﬁe(x)dx = %/ue(x, t)dx for every t >y,

so that a — ¢ < ¢, < a. Since by construction 7.(x) < v(x,#;) in R, from the
comparison theorem we have vg(x, t) < v(x,?) inR x (#1, 00).

We now consider the family of explicit solutions {v«(x — x0,¢ + T; c¢), X0 €
[=b, b], T > 0} having the same mass c; as u.(x, ¢). For a fixed ¢t > 71, we denote
by I(¢; xo, T') the number of sign changes in R of the difference w(x, ¢; xo, T) =
Ve (x, 1) —vs(x —x0, t +T; c.) or, which is the same, the intersection number in R of
the functions ve (x, t) and v« (x — x90, ¢ 4+ T'; c.). By the intersection comparison (see
Section 2.5), we have that I (¢; xg, T') does not increase with time and, in particular,

I(¢;x0,T) < I(t1;%x0,T) for t > 1. (3.102)

Notice that by known C*°-regularity (and analyticity) of the weak solution at positiv-
ity points, we may conclude that for ¢ > #; every zero of the difference in the positiv-
ity domain of both solutions considered is an isolated point. Since by the properties
of the explicit solutions given above, we have for an arbitrary fixed xo € [—b, b],

va(X —x0, 81 + T5¢ce) ®c2/2(t1 +T) as T — o0

uniformly in x on compact subsets of R, by using the property (iii) of the function
ve(x, t1), we have that for every xo € [—b, b] and T large enough,

I(t1;%0, T) = 2. (3.103)
This together with (3.102) yields the inequality
I(t;xg, T) <2 for ¢t >1t. (3.104)

Fix an arbitrary xo € [—b, b] and T = Ty large enough. We now prove that for
t>1,

sup veg(x,t) > sup ve(x — xq,t + Tp; ce). (3.105)
xeR xeR

Assume for a moment that this is true. Then

Sup vs (x = x0, £+ Toi c2) = vu(0, £ + To; cz) = c2/2(t + To),
Xe
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and (3.105) implies that

litm inf ¢ sup v(x,¢) > liminf ¢ sup ve(x,t) > -lz-cz

xeR f—00 xeR

Since ¢ > 0 is arbitrary, we obtain the desired result (3.100). Let us prove (3.105).
Step 4. Suppose (3.105) is not valid and

t, =sup{r; + 7 > 0, (3.105) holds for all ¢ € [#,¢; + t]} < 00.

Let x4 € [—b, b] be a point of maximum of the function v.(x, t,) and hence by a
definition of ¢,, we have

Ve (X, 1) = c2/2(ty + To). (3.106)
Consider the explicit solution v« (x — xx, ¢ + Tp; c¢). By construction,
WX, b X To) = Ve (X, 1) — V(X — Xer e + To; ¢e) =0 for x = xi, (3.107)

and wy (x, t; x4, Tp) = 0 for x = x,.

Suppose first that x = x, is a tangency point of the functions v (x, #,) and v, (x —
X, t«+T0; Ce), 1.€., the difference w(x, t4; x4, Tp) satisfying (3.107) does not change
sign in a small neighbourhood of the point x = x,. Since these have the same masses,

I(ty; x4, Tp) = 1. (3.108)

Indeed, if (3.108) is not valid and I (#«; x«, Tp) = O, then by the strong maximum
principle it follows that, since v, £ vy, for arbitrarily small § > 0 either v, (x, z, +
8) < Vu(x — Xy, t +Top+8; cc) Oor vo(x, t +8) > vVie(Xx — Xy, tx + Tog + 8; c¢) in the
domain of positivity of both functions, contradicting the equality of masses. Hence,
there exists at least one point of intersection, i.e., a point x; where the difference w
changes sign, and x; # x.. Assume without loss of generality that the difference
w(x, ; X, To) < 0 in a small neighbourhood J, = (x4« — r, x4« + r) of the point
x = x4 withr < |x; —x,|. Then by using the continuous dependence of the function
Vs (X — X4, tx + Tp; ce) with respect to a small perturbation of the value of Ty, we
obtain that for any small § > 0, there exist at least two points of sign change for the
perturbed difference w(x, t4; x4, To + 8) in J,, one to the left of x = x, and one to
the right, and also an intersection point which lies not far from x;, and anyway is
outside J,. Therefore, for small § > 0, we have

I(ts; x4, To +8) > 3. (3.109)

This leads to a contradiction with (3.104) for t = #,, xg = x« € [-b,b]and T =
To + 6.

Now, if the maximum x = x, is an inflection point for the difference w(x, #;
x«, T') satisfying (3.107), namely that it changes sign in any neighbourhood of the
point x = x4, then we easily show that such inflection can occur from, at least, three
points of intersection. Assume without loss of generality that w(x, t; x4, Tp) > 0
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in a small left-hand neighbourhood of x = x, and w(x, t4; x4, To) < O in a small
right-hand one. Then it is easily seen that for any A > 0 small enough there holds

I(te; xe — A, Tp) =3 (3.110)

holds, contradicting (3.104) for ¢t = ¢,, x9 = x4« — A and T = Tp and completing the
proof of Lemma 3.15 in the case of compactly supported data.

Step 5. If ug is not compactly supported, the proof is made by approximation
from below with compactly supported functions. O

Semiconvexity. For the proof of Theorem 3.7, we need also the following lower
estimate of the second derivative of the solution.

Lemma 3.16 Let u(x, t) be a solution of (3.55), (3.56). Then for every ¢ > O, there
exists Ty > O such that in the domain {(x,t) : x € R, t > T;}

1+
tIn?t

(3.111)

Uxx =

Proof. We derive a semiconvexity estimate; see comments at the end of the chapter.
By approximation, we may assume that ug is continuous, bounded and positive in R.
Then v(x, t) is a classical solution of equation (3.59). Differentiating it twice with
respect to x, we obtain the equation satisfied by z = vy,

2t = v(In v)%zxy + 2[(Inv)? + 2 In v]vyzy

+ %(m v+ D)%z + [(Inv)? +21nv]z.  (3.112)

We try an explicit subsolution for this equation in the form z(t) = —1/¢(t), with
¢ > 0. Then we easily check that a sufficient condition is that

o'(t) < inf [(ln v(x,1))? +21n v(x,t)]. (3.113)
xeR

Now, for large ¢ > 0, from Lemma 3.13 we have v < const/?, hence In>v+21Inv >
(1 — &/4) In? ¢ for & small if ¢ is large enough. Therefore, an admissible choice is

o) =1 —¢/2)¢t —T) In’¢ (3.114)

if + > T for some large T. Since with this choice z will be a subsolution of equation
(3.112)in D = {(x,t) : x € R,¢t > T} and z(x, T) = —0o0, we conclude from the
maximum principle that vy, > z in D hence the conclusion in the limit. o

The optimality of estimate (3.111) is checked by looking at the explicit solution
v« (x, t; ¢), for which we have the estimate

W) = =12 )P+ 0(¢In®)™!) as t — oo.

Observe that (v4) (0, 2; ¢) = —[¢ In?(2¢ /c*)]™ ! for ¢ > ¢2/2.
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Proof of Theorem 3.8. Under the additional assumption that 1o has compact support,
we now prove sharp estimates of the support of the solution

Suppu(x, t) = [S__(t), S+(t)] ’

which is a connected interval for large ¢, say for ¢ > #;.

We take the function U (x,?) = us«(x — d4,t + T;a), where a is one-half of
the mass of ug, T > a2/2 and d+ = s4+(t1) + x«(T; a), so that the support of
U(x,0), (S-(0), S+(0)), lies to the right of the support of ug. Then, by the shifting
comparison principle (see Section 2.5) we have a comparison of the interfaces of u
and U, i.e.,fort > ¢,

5+() <S4 (@) =dy +x( + T3 a)

(3.115)
s—() <S_(t)=dy —x.,(t +T;a).

A similar argument by shifting to the left gives s (¢) z —d_ + x4t +T;a) and
§_(t) > —d_—x,(t+T;a),whered_ = s_(t;) — x+«(T; a). In view of the formula
for x.(t + T; a), we then have

s+@)=alnt+01), s_(@)=—alnt+ O(1),

which completes the proof. O

Proof of Theorem 3.7. Consider the Cauchy problem (3.68), (3.69) for the quasilin-
ear parabolic equation which is a perturbation of the autonomous one

0r = A(0). (3.116)

By Lemma 3.13 the evolution orbit {6(-, ), T > 74} is uniformly bounded, and
hence, by a general regularity result for quasilinear parabolic equations, it is compact
in Co(R). We now prove that the w-limit set w (6y) = { f € Co(R) : f > 0and there
exists {tj} — oo such that 6(:, ;) — f(:) as j — oo uniformly in R}, is precisely

w(60) = {Fa()}, (3.117)

which indeed yields (3.60).
Choose an arbitrary f € w(6p), so that there exists a sequence {r;} — 00 such
that

6(-,tj) = f() as j — oo uniformly in R. (3.118)

Applying Aleksandrov’s reflection principle and passing to the limit T — 00, we
have f = f(|n|) and f does not increase in |7].

We now prove that f(a) = 0. Suppose for a contradiction that f(a) > 0 and
hence by continuity

meas (supp f) > 2a. (3.119)
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Using the conservation law (3.77) for the rescaled function § with T = 7;, we obtain

+00 Ino ) -1

f [1 - 31—91-3!-} dn = Ep =2a (3.120)
In z;

—00

for j = 1,2, .... It follows from (3.118) that for a given small ¢ > 0, there exists
Je > 0 such that

0(,7j) = (f()—¢)+ in R forany j > je. (3.121)
Therefore (3.119) and (3.121) imply that for any € > O small enough,
meas (supp 0 (-, 7;)) > meas (supp (f(-) — €)4) > 2a (3.122)
for j > j,. Combining (3.120)—(3.122) yields the estimate

+00 o -1 +00 1 -1
/[1_ n (n,ff)] dn > f [1_ n((f(n)—8)+)] dn (3.123)

Inz; Inz;
eYs) - 00

— meas (supp (f(-) —€)+) > 2a as j — o0,

contradicting the conservation law (3.120).
Thus, f(a) = 0 and meas (supp f) < 2a. Using Lemma 3.15, we deduce that

£(0) > a?/2. (3.124)

Rewriting estimate (3.111) for the function (7, ), integrating this inequality twice
and passing to the limit T = 7; — 00, we obtain

HOERIGORE R (3.125)

By using (3.111) again, we may also conclude that f,, > —1 a.e. Since Fy;(n;a) =
—11in [0, a], from (3.124) and (3.125) we have that the difference z(n) = f(n) —
Fy(n) satisfies z > 0, z;, > 0 a.e. in [0, a], and since z(a) = 0, one can see that
zy(a) < 0. Assume for contradiction that z % O and hence z,; > 0 in a set of
nonzero measure in [0, a]. Then integrating the inequality z,, > 0 over (0, a) yields

ZU(O) < Zr;(a) < 01

contradicting the symmetry condition at the origin. This completes the proof. O

Comparison with the PME. It is interesting to consider our equation (3.55) as some
kind of limit of the PME u; = (u™)y, as m — 00. Thus, the PME admits a family of
explicit self-similar ZKB solutions denoted now by U,, (x, ¢) (see precise formulae
in Section 2.2), which decay in time according to

Un(x, 1) < aplluolly/ "D +D, g, > 0, (3.126)
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while their support is confined by the interfaces =+s,, (),

$m(8) = a llu||{" VDD e 0, (3.127)
These estimates are true for every nonnegative solution while initial data are com-
pactly supported. Put now v = U]} (in analogy to (3.58)) and let m — oo to obtain
a formal expression for the upper bound in the limit

Uoo(%, 1) < acolluol?¢71, (3.128)

which agrees with Theorem 3.7. Agreement with Theorem 3.8 for the interfaces
necessitates replacing ¢!/@"+1 in the limit m = oo by a slow growing factor In?
(and not by 1), then obtaining

Soo(t) = Coolluoll1 Inz. (3.129)

Remarks and comments on the literature

General existence, uniqueness, comparison and regularity results for quasilinear fil-
tration equations with arbitrary superslow diffusion coefficients can be found in the
survey [202], see also the book [96], and one of the first papers on the weak theory
for nonlinear heat equations is [257]. Friedman [121] proposed an interesting appli-
cation of superslow diffusion equations to describe drying of photographic film. The
model is further studied in [99].

§ 3.1. We follow the results of our paper [145]. A one-sided estimate on the solutions
for equations of superslow diffusion has been derived in [115]. This estimate is not
sharp enough to describe the asymptotic behaviour.

The idea of approximate self-similar solutions, i.e., those which do not satisfy
the equation (and have extra symmetries) but describe its asymptotic properties, are
quite fruitful in the asymptotic theory of equations of nonlinear heat conduction.
See a survey in [166] and Section 6 in [286]. The second author has viewed the same
issue as a form of asymptotic simplification, [305], which is an idea going back to the
reduced equation in Prandtl’s boundary layer theory [271]. See references in those
works.

§ 3.2. For the Cauchy problem in superslow diffusion we follow [170]. It is remark-
able that the family of asymptotic rescaled profiles is the same for both the Cauchy
and the initial-boundary value problems. This is not true for the PME u; = (™),
for a fixed 0 < m < 00, see references in [202], [169] and in Chapter 4. Explicit so-
lutions (3.79) were constructed in [221], see also [286], p. 79. About Aleksandrov’s
reflection principle (method of moving planes) [1], [2] in the theory of nonlinear
parabolic and elliptic equations, see Chapt. 9 in [183], and Section 2.5.

In the proof of Lemma 3.15, a simple reflection analysis can be done as follows.
Given b > 1, the difference of two solutions w(x, t) = u(x, t) —u(2b—x, t), where
u(2b — x, t) is the solutions reflected in x relative to the point x = b, formally solves
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for x > b,t > 0 alinear parabolic equation, obtained by a standard linearization-like
procedure, with the Dirichlet boundary condition w(b, t) = 0. Since the initial data
satisfy w(x, 0) = up(x) —uo(2b—x) = uo(2b—x) < 0 for any compactly supported
data ug if b > 1, by the maximum principle w(x,t) < 0. Therefore w(x,t) is
nonincreasing in x at x = b, whence the monotonicity: u(x, ¢) is nonincreasing in x
atanyx = b > 1.

In the proof of Lemma 3.15 we first apply the technique of intersection compar-
ison, see Section 2.5. In Step 4 of the proof we use a technique from [155], [162],
which shows that, given a “complete” family of particular exact solutions, via a small
C!-perturbation any inflection point can be transformed to at least three (transversal)
points of intersection. This analysis does not need the general result on multiple zeros
proved in [8] (see also [229]).

The semiconvexity estimate in Lemma 3.16 follows the ideas of [16]. The shift-
ing comparison principle in the proof of Theorem 3.8 was introduced in [300]. Some
similar results for more general quasilinear heat equations can be proved by inter-
section comparison, see [128] and [286], p. 245. This establishes the connection
between the two approaches. Let us give some details. By construction, the solutions
u(x,t) and U(x, t) atz = O have a unique intersection: /(0) = 1. Then I (¢) < 1 for
all t > 0. Therefore, the opposite inequality s;(¢;) > S+(#1) would mean that this
intersection would disappear at the interface at some t, < #; so that I(¢;) = 0 and
hence u(x, t;) > () U(x, t1). This is impossible since both solutions have the same
mass (L!-norm).

It is a typical argument of intersection comparison (to be used several times in the
next chapters) of solutions having a common evolution property like same masses,
momenta, blow-up or other singularity times, etc. Such a common property makes it
possible to establish a lower bound on the intersection number, like 7(z) > 1 in the
present proof. Together with the upper bound (I (¢) < 1) by the Sturm theorem, this
establishes both bounds on the number of intersections and completes the geometric
analysis via intersection comparison. In the present example we finally arrive at the
equality I(z) = 1 for all # > 0, and this gives sharp estimates on the support (3.115)
and other L™ estimates. See similar comments in Section 2.5.1.

The symmetrization argument, based on Aleksandrov’s reflection principle, in
the proof of Theorem 3.7 is given in Section 5 of [210]; see Section 2.5.3.

In the final remark, a rigorous limit m — 00 in the equation u; = (D, (4))xx
leads to the so called “mesa problem” studied by several authors, cf. [37], [67], [104],
[122], [284]. There are other instances of mesa problems: a mesa problem for m — 0
is described in [280].
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Quasilinear Heat Equations with Absorption.
The Critical Exponent

We present here the second example of application of the S-Theorem. We consider
a quasilinear heat equation with two different operators, one representing
diffusion, the other one absorption. We show that there exists a special critical
relation of the exponents where these two operators generate a nontrivial
nonlinear interaction which gives rise to an unusual asymptotic behaviour, more
complex than the one corresponding to noncritical exponents.
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